Review
BibTex RIS Cite

BITTER TASTE PERCEPTION MECHANISM, REMOVAL OF BITTERNESS CAUSED BY PEPTIDE IN DAIRY PRODUCTS AND CURRENT APPROACHES

Year 2020, , 299 - 314, 15.01.2020
https://doi.org/10.15237/gida.GD19151

Abstract

Peptides responsible for bitter taste may form, as a result of the hydrolysis of protein-rich foods. The perception of bitterness is formed by the stimulation of bitter taste receptors and the interpretation of the signal sent to the brain through the nervous system. Dairy products are often characterized by bitter peptides. In studies conducted, it has been stated that the bitter peptides identified in cheese are generally originated from αs1- and β-casein. The bitter taste intensity of protein hydrolysates varies depending on the hydrophobicity of the peptide, the number of hydrophobic amino acids and its the chain length. While accelerating ripening in cheeses, methods including aminopeptidase, carboxypeptidase and adjunct cultures with starter culture have been used recently to prevent the formation of bitter taste defects. In this review; the formation and perception mechanism of bitter peptides has been explained and current studies on bitter removal methods have been presented.

References

  • Altieri, C., Ciuffreda, E., Di Maggio, B., Sinigaglia, M. (2017). Lactic acid bacteria as starter cultures. In: Starter Cultures in Food Production, Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M. (eds.), 1st Edition, John Wiley & Sons, the UK, pp. 1-15, doi: 10.1002/9781118933794.
  • Aluko, R.E. (2017). Structural characteristics of food protein-derived bitter peptides. In: Bitterness: Perception, Chemistry and Food Processing, Aliani, A., Eskin, M.N.A. (eds.), 1st Edition, The Institute of Food Technologists Press, the UK, pp. 105-129.
  • Aryee, A.N.A., Agyei, D., Udenigwe, C.C. (2018). Impact of processing on the chemistry and functionality of food proteins. In: Proteins in Food Processing, Yada, R.Y. (ed.), 2nd Edition, Woodhead Publishing, the UK, pp. 60-89.
  • Baptista, D.P., Araújo, F.D.S., Eberlin, M.N., Gigante, M.L. (2017). A survey of the peptide profile in Prato cheese as measured by MALDI-MS and capillary electrophoresis. Journal of Food Science, 82(2): 386-393, doi: 10.1111/1750-3841.13618.
  • Baptista, D.P., Galli, B.D., Cavalheiro, F.G., Negrãoi, F., Eberlin, M.N., Gigante, M.L. (2018). Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal, 87: 75-83, doi: 10.1016/j.idairyj.2018.08.001.
  • Bas, D., Kendirci, P., Salum, P., Govce, G., Erbay, Z. (2019). Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: I-effects of proteolytic enzymes and determination of their appropriate combination. Food and Bioproducts Processing, 117: 287-301, doi: 10.1016/j.fbp.2019.07.016.
  • Batu, A. (2017). Moleküler gastronomi bakış açısıyla gıdaların tat ve aroma algıları. Aydın Gastronomy, 1(1): 25-36.
  • Bhopale, G.M. (2016). Bovine milk derived peptides: A comprehensive review. European Journal of Pharmaceutical and Medical Research, 3(3): 167–170, ISSN: 3294-3211.
  • Børsting, M.W., Qvist, K.B., Ardö, Y. (2014). Influence of pH on retention of camel chymosin in curd. International Dairy Journal, 38(2): 133-135, doi: 10.1016/j.idairyj.2014.01.001.
  • Briand, L., Salles, C. (2016). Taste perception and integration. In: Flavor From Food to Behaviors, Wellbeing and Health, Etiévant, P., Guichard, E., Salles, C., Voilley, A. (eds.), 1st Edition, Woodhead Publishing, the UK, pp. 101-119, ISBN-10: 0081002955.
  • Broadbent, J.R., Barnes, M., Brennand, C., Strickland, M., Houck, K., Johnson, M.E., Steele, J.L. (2002). Contribution of Lactococcus lactis cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat Cheddar cheese. Applied and Environmental Microbiology, 68(4): 1778-1785, doi: 10.1128/AEM.68.4.1778–1785.2002.
  • Bumberger, E., Belitz, H.D. (1993). Bitter taste of enzymic hydrolysates of casein. I. Isolation, structural and sensorial analysis of peptides from tryptic hydrolysates of β-casein. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 197(1): 14-19, doi: 10.1007/BF01202693.
  • Cacicedo, M.L., Manzo, R.M., Municoy, S., Bonazza, H.L., Islan, G.A., Desimone, M., Bellino, M., Mammarella, E.J., Castro, G.R. (2019). Immobilized enzymes and their applications. In: Advances In Enzyme Technology Series: Biomass, Biofuels, Biochemicals, Pandey, A. (Chief ed.), 1st Edition, Elsevier, the UK, pp. 169-200, ISBN: 978-0-444-64114-4.
  • Calzada, J., del Olmo, A., Picon, A., Gaya, P., Nuñez, M. (2014). Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 32(2): 64-73, doi: 10.1016/j.idairyj.2014.03.002.
  • Calzada, J., del Olmo, A., Picon, A., Gaya, P., Nuñez, M. (2015). Effect of high-pressure processing on the microbiology, proteolysis, biogenic amines and flavour of cheese made from unpasteurized milk. Food and Bioprocess Technology, 8: 319-332, doi: 10.1007/s11947-014-1406-7.
  • Carmi, I.K., Benjamin, O. (2017). Reduction in sodium content of fresh, semihard Tzfat cheese using salt replacer mixtures: taste, texture and shelf life evaluation. International Journal of Dairy Technology, 70(3): 354-364, doi: 10.1111/1471-0307.12369.
  • Chakrabarti, S., Guha, S., Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11): 1738; doi: 10.3390/nu10111738.
  • Clegg, K.M., Lim, C.L., Manson, W. (1974). The structure of a bitter peptide derived from casein by digestion with papain. Journal of Dairy Research, 41(2): 283-287, doi: 10.1017/S0022029900019695.
  • Daliri, E.B-M., Oh, D.H., Lee, B.H. (2017). Bioactive peptides. Foods, 6(5): 32, doi: 10.3390/foods6050032.
  • Desmasures, N. (2014). Mold-Ripened Varieties. In: Encyclopedia of Food Microbiology, Batt, C.A. (Chief ed.), 2nd Edition, Volume 1, the UK, pp. 409-415, doi: 10.1016/B978-0-12-384730-0.00060-4.
  • Dorian, A.F. (ed.), (1978). Dictionary of science and technology. 1st Edition, Elsevier Science Publishing, New York, the USA, 1411 p.
  • Fábián, T.K., Beck, A., Fejérdy, P., Hermann, P., Fábián, G. (2015). Molecular mechanisms of taste recognition: considerations about the role of saliva. International Journal of Molecular Sciences, 16(3): 5945–5974, doi: 10.3390/ijms16035945.
  • Foegeding, E.A., Davis, J.P. (2011). Food protein functionality: A comprehensive approach. Food Hydrocolloids, 25: 1853-1864, doi: 10.1016/j.foodhyd.2011.05.008.
  • Gaudette, N.J., Pickering, G.J. (2013). Modifying bitterness in functional food systems. Critical Reviews in Food Science and Nutrition, 53(5): 464–481, doi: 10.1080/10408398.2010.542511.
  • Ghnimi, S., Kamal-Eldin, A. (2015). Casein variants and challenges in the valorization of camel milk as a healthy alternative to cow milk. Journal of Bioequivalence and Bioavailability, 7(4): 10000e67, doi: 10.4172/jbb.10000e67.
  • Giannoglou, M., Karra, Z., Platakou, E., Katsaros, G., Moatsou, G., Taoukis , P. (2016). Effect of high pressure treatment applied on starter culture or on semi-ripened cheese in the quality and ripening of cheese in brine. Innovative Food Science and Emerging Technologies, 38: 312-320, doi: 10.1016/j.ifset.2016.07.024.
  • Grygier, A., Myszka, K., Rudzińska, M. (2017). Galactomyces geotrichum – moulds from dairy products with high biotechnological potential. Acta Scientiarum Polonorum, Technologia Alimentaria, 16(1): 5-16, doi: 10.17306/J.AFS.2017.2017.0445.
  • Guichard, Salles, C. (2016). Retention and release of taste and aroma compounds from the food matrix during mastication and ingestion. In: Flavor From Food to Behaviors, Wellbeing and Health, Etiévant, P., Guichard, E., Salles, C., Voilley, A. (eds.), 1st Edition, Woodhead Publishing, the UK, pp. 3-22, ISBN-10: 0081002955.
  • Guigoz, Y., Solms, J. (1976). Bitter peptides, occurrence and structure. Chemical senses and flavor, 2(1): 71-84, doi: 10.1093/chemse/2.1.71.
  • Hajj, E., Yaacoub, R., Al-Arja, N., Scandar, S., Dib, H. (2019). Development of a culture-ripened semi-hard Kishk-cheese containing Bourghol or Semolina. Journal of Food Research, 8(1): 21-31, doi: 10.5539/jfr.v8n1p21. Jørgensen, C.E., Abrahamsen, R.K., Rukke, E-O., Hoffmann, T.K., Johansen, A-G., Skeie, S.B. (2019). Processing of high-protein yoghurt – a review. International Dairy Journal, 88: 42-59, doi: 10.1016/j.idairyj.2018.08.002.
  • Karadeniz, F. (2000). Lezzet algılama mekanizması. Gıda, 25(5): 317-324, ISSN: 1300-3070.
  • Karametsi, K., Kokkinidou, S., Ronningen, I., Peterson, D.G. (2014). Identification of bitter peptides in aged Cheddar cheese. Journal of Agricultural and Food Chemistry, 62(32): 8034-8041, doi: 10.1021/jf5020654.
  • Kazaz, Ç., Ocak, M., Mesut, B., Özsoy, Y. (2019). Ağızda dağılan tabletlerde formülasyon tasarımı ve tat değerlendirilmesi. FABAD Journal of Pharmaceutical Sciences, 44(2): 169-178.
  • Kim, K-S., Egan, J.M., Jang, H-J. (2014). Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia, 57: 2117–2125, doi: 10.1007/s00125-014-3326-5.
  • Krisch, J., Csanádi, J., Vágvölgyi, C. (2015). Fungi in and on dairy products. In: Fungi from Different Substrates, Misra, J.K., Tewari, J.P., Deshmukh, S.K., Vágvölgyi, C. (eds.), 1st Edition, CRC Press, Boca Raton, pp. 159-169, doi: 10.1201/b17646.
  • Lee, K.D., Lo, C.G., Warthesen, J.J. (1996). Removal of bitterness from the bitter peptides extracted from Cheddar cheese with peptidases from Lactococcus lactis ssp. cremoris SK11. Journal of Dairy Science, 79(9): 1521-1528, doi: 10.3168/jds.S0022-0302(96)76512-8.
  • Lemieux, L. Simard, R.E. (1992). Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition. Lait, 72(4): 335-382, doi: 10.1051/lait:1992426.
  • Liu, X., Jiang, D., Peterson, D.G. (2014). Identification of bitter peptides in whey protein hydrolysate. Journal of Agricultural and Food Chemistry, 62(25): 5719-5725, doi: 10.1021/jf4019728.
  • Ma, J-J., Mao, X-Y., Wang, Q., Yang, S., Zhang, D., Chen, S-W., Li., Y-H. (2014). Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT - Food Science and Technology, 56(2): 296-302, doi: 10.1016/j.lwt.2013.12.019.
  • McSweeney, P.L.H. (2007). Cheese manufacture and ripening and their influence on cheese flavour. In: Improving the flavour of cheese, Weimer, B.C. (ed.), 1st Edition, Woodhead Publishing, England, pp. 1-25.
  • Melis, M., Barbarossa, I.T. (2017). Taste perception of sweet, sour, salty, bitter, and umami and changes due to l-arginine supplementation, as a function of genetic ability to taste 6-n-propylthiouracil. Nutrients, 9(6):E541, doi: 10.3390/nu9060541.
  • Meng, F., Chen, R., Zhu, X., Lu, Y., Nie, T., Lu, F., Lu, Z. (2018). Newly effective milk-clotting enzyme from Bacillus subtilis and its application in cheese making. Journal of Agricultural and Food Chemistry, 66: 6162-6169, doi: 10.1021/acs.jafc.8b01697.
  • Miişoğlu, D., Hayoğlu, İ. (2005). Tat eşik değerlerinin algılanması, tanınması ve derecelendirilmesi. Harran Üniversitesi Ziraat Fakültesi Dergisi, 9(2): 29-35.
  • Mohammadi, R., Mahmoudzadeh, M., Atefi, M., Khosravi‐Darani K., Mozafari, M.R. (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology, 68(1): 11-23, doi: 10.1111/1471-0307.12174.
  • Mohan, A., Udechukwu, M.C., Rajendran, S.R.C.K., Udenigwe, C.C. (2015). Modification of peptide functionality during enzymatic hydrolysis of whey proteins. RSC Advances, 5: 97400-97407, doi: 10.1039/C5RA15140F.
  • Nielsen, S.D., Jansson, T., Le, T.T., Jensen, S., Eggers, N., Rauh, V., Sundekilde, U.K., Sørensen, J., Andersen, H.J., Bertram, H.C., Larsen, L.B. (2017). Correlation between sensory properties and peptides derived from hydrolysed-lactose UHT milk during storage. International Dairy Journal, 68: 23-31, doi: 10.1016/j.idairyj.2016.12.013.
  • Paul, M., Nuñez, A., Van Hekken, D.L., Renye, J.A.Jr. (2014). Sensory and protein profiles of Mexican Chihuahua cheese. Journal of Food Science and Technology, 51(11): 3432-3438, doi: 10.1007/s13197-012-0868-8.
  • Poveda, J.M., Cabezas, R.C.L. (2015). Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. International Dairy Journal, 47: 94-101, doi: 10.1016/j.idairyj.2015.03.004
  • Rauh, V.M., Johansen, L.B., Ipsen, R., Paulsson, R., Larsen, L.B., Hammershøj, M. (2014). Plasmin Activity in UHT milk: Relationship between proteolysis, age gelation, and bitterness. Journal of Agricultural and Food Chemistry, 62(28): 6852-6860, doi: 10.1021/jf502088u.
  • Sebald, K., Dunkel, A., Schäfer, J., Hinrichs, J., Hofmann, T. (2018). Sensoproteomics: A new approach for the identification of taste-active peptides in fermented foods. Journal of Agricultural and Food Chemistry, 66(42): 11092−11104, doi: 10.1021/acs.jafc.8b04479.
  • Solms, J. (1969). The taste of amino acids, peptides, and proteins. Journal of Agricultural and Food Chemistry, 17(4): 686-688, doi: 10.1021/jf60164a016.
  • Stepaniak, L. (2004). Dairy enzymology. International Journal of Dairy Technology, 57(2/3): 153-171, doi: 10.1111/j.1471-0307.2004.00144.x.
  • Teixeira, P. (2014). Lactobacillus delbrueckii ssp. bulgaricus. In: Encyclopedia of Food Microbiology, Batt, C.A. (Chief ed.), 2nd Edition, Volume 2, the UK, pp. 425-431, doi: 10.1016/B978-0-12-384730-0.00060-4.
  • Thierry, A., Valence, F., Deutsch, S.-M., Even, S., Falentin, H., Loir, Y.L., Jan, G., Gagnaire, V. (2015). Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–A review. Dairy Science and Technology, 95(6): 895-918, doi: 10.1007/s13594-015-0267-9.
  • Toelstede, S., Hofmann, T. (2008). Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. Journal of Agricultural and Food Chemistry, 56(8): 2795-2804, doi: 10.1021/jf7036533.
  • Vummaneni, V., Nagpal, D. (2012). Taste masking technologies: An overview and recent updates. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(2): 510-524, ISSN: 2229-3701.
  • Widyastuti, Y., Lisdiyanti, P., Tisnadjaja, D. (2014). Role of Lactobacillus helveticus on flavor formation in cheese: Amino acid metabolism. Annales Bogorienses, 18(1): 1-11, doi: 10.14203/ann.bogor.2014.v18.n1.1-11.
  • Yarlagadda, A.B. (2014). Assessment of different novel approaches to accelerate cheese ripening for a range of applications. Ph.D. Dissertation, University of Limerick, Limerick, Ireland, 350 p.
  • Yarlagadda, A.B., Wilkinson, M.G., O'Sullivan, M.G., Kilcawley, K.N. (2014). Utilisation of microfluidisation to enhance enzymatic and metabolicpotential of lactococcal strains as adjuncts in Gouda type cheese. International Dairy Journal, 38(2): 124-132, doi: 10.1016/j.idairyj.2014.01.007.

ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR

Year 2020, , 299 - 314, 15.01.2020
https://doi.org/10.15237/gida.GD19151

Abstract

Protein bakımından zengin gıdaların hidrolizasyona uğraması sonucu acı tattan sorumlu peptitler oluşabilmektedir. Acılık algısı, acı tat reseptörlerinin uyarılması ve sinir sistemi ile beyne gönderilen sinyalin yorumlanması ile oluşmaktadır. Süt ürünleri çoğu zaman acı peptitlerle karakterize edilmektedir. Yapılan çalışmalarda peynirde tanımlanan acı peptitlerin genellikle αs1- ve β-kazein kaynaklı olduğu belirtilmiştir. Protein hidrolizatlarının acı tat yoğunluğu peptitin hidrofobisitesine, hidrofobik amino asit sayısına ve zincir uzunluğuna bağlı olarak değişmektedir. Peynirlerde olgunlaşmayı hızlandırırken, acı tat kusurlarının oluşumunu engellemek için son zamanlarda aminopeptidaz, karboksipeptidaz ve starter kültürle birlikte yardımcı kültürlerin yer aldığı metotlar kullanılmaktadır. Bu derlemede; acı peptitlerin oluşumu ve algılanma mekanizması açıklanmış ve acılık giderme yöntemleri ile ilgili güncel çalışmalar sunulmuştur.

References

  • Altieri, C., Ciuffreda, E., Di Maggio, B., Sinigaglia, M. (2017). Lactic acid bacteria as starter cultures. In: Starter Cultures in Food Production, Speranza, B., Bevilacqua, A., Corbo, M.R., Sinigaglia, M. (eds.), 1st Edition, John Wiley & Sons, the UK, pp. 1-15, doi: 10.1002/9781118933794.
  • Aluko, R.E. (2017). Structural characteristics of food protein-derived bitter peptides. In: Bitterness: Perception, Chemistry and Food Processing, Aliani, A., Eskin, M.N.A. (eds.), 1st Edition, The Institute of Food Technologists Press, the UK, pp. 105-129.
  • Aryee, A.N.A., Agyei, D., Udenigwe, C.C. (2018). Impact of processing on the chemistry and functionality of food proteins. In: Proteins in Food Processing, Yada, R.Y. (ed.), 2nd Edition, Woodhead Publishing, the UK, pp. 60-89.
  • Baptista, D.P., Araújo, F.D.S., Eberlin, M.N., Gigante, M.L. (2017). A survey of the peptide profile in Prato cheese as measured by MALDI-MS and capillary electrophoresis. Journal of Food Science, 82(2): 386-393, doi: 10.1111/1750-3841.13618.
  • Baptista, D.P., Galli, B.D., Cavalheiro, F.G., Negrãoi, F., Eberlin, M.N., Gigante, M.L. (2018). Lactobacillus helveticus LH-B02 favours the release of bioactive peptide during Prato cheese ripening. International Dairy Journal, 87: 75-83, doi: 10.1016/j.idairyj.2018.08.001.
  • Bas, D., Kendirci, P., Salum, P., Govce, G., Erbay, Z. (2019). Production of enzyme-modified cheese (EMC) with ripened white cheese flavour: I-effects of proteolytic enzymes and determination of their appropriate combination. Food and Bioproducts Processing, 117: 287-301, doi: 10.1016/j.fbp.2019.07.016.
  • Batu, A. (2017). Moleküler gastronomi bakış açısıyla gıdaların tat ve aroma algıları. Aydın Gastronomy, 1(1): 25-36.
  • Bhopale, G.M. (2016). Bovine milk derived peptides: A comprehensive review. European Journal of Pharmaceutical and Medical Research, 3(3): 167–170, ISSN: 3294-3211.
  • Børsting, M.W., Qvist, K.B., Ardö, Y. (2014). Influence of pH on retention of camel chymosin in curd. International Dairy Journal, 38(2): 133-135, doi: 10.1016/j.idairyj.2014.01.001.
  • Briand, L., Salles, C. (2016). Taste perception and integration. In: Flavor From Food to Behaviors, Wellbeing and Health, Etiévant, P., Guichard, E., Salles, C., Voilley, A. (eds.), 1st Edition, Woodhead Publishing, the UK, pp. 101-119, ISBN-10: 0081002955.
  • Broadbent, J.R., Barnes, M., Brennand, C., Strickland, M., Houck, K., Johnson, M.E., Steele, J.L. (2002). Contribution of Lactococcus lactis cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat Cheddar cheese. Applied and Environmental Microbiology, 68(4): 1778-1785, doi: 10.1128/AEM.68.4.1778–1785.2002.
  • Bumberger, E., Belitz, H.D. (1993). Bitter taste of enzymic hydrolysates of casein. I. Isolation, structural and sensorial analysis of peptides from tryptic hydrolysates of β-casein. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 197(1): 14-19, doi: 10.1007/BF01202693.
  • Cacicedo, M.L., Manzo, R.M., Municoy, S., Bonazza, H.L., Islan, G.A., Desimone, M., Bellino, M., Mammarella, E.J., Castro, G.R. (2019). Immobilized enzymes and their applications. In: Advances In Enzyme Technology Series: Biomass, Biofuels, Biochemicals, Pandey, A. (Chief ed.), 1st Edition, Elsevier, the UK, pp. 169-200, ISBN: 978-0-444-64114-4.
  • Calzada, J., del Olmo, A., Picon, A., Gaya, P., Nuñez, M. (2014). Effect of high-pressure-processing on the microbiology, proteolysis, texture and flavour of Brie cheese during ripening and refrigerated storage. International Dairy Journal, 32(2): 64-73, doi: 10.1016/j.idairyj.2014.03.002.
  • Calzada, J., del Olmo, A., Picon, A., Gaya, P., Nuñez, M. (2015). Effect of high-pressure processing on the microbiology, proteolysis, biogenic amines and flavour of cheese made from unpasteurized milk. Food and Bioprocess Technology, 8: 319-332, doi: 10.1007/s11947-014-1406-7.
  • Carmi, I.K., Benjamin, O. (2017). Reduction in sodium content of fresh, semihard Tzfat cheese using salt replacer mixtures: taste, texture and shelf life evaluation. International Journal of Dairy Technology, 70(3): 354-364, doi: 10.1111/1471-0307.12369.
  • Chakrabarti, S., Guha, S., Majumder, K. (2018). Food-derived bioactive peptides in human health: Challenges and opportunities. Nutrients, 10(11): 1738; doi: 10.3390/nu10111738.
  • Clegg, K.M., Lim, C.L., Manson, W. (1974). The structure of a bitter peptide derived from casein by digestion with papain. Journal of Dairy Research, 41(2): 283-287, doi: 10.1017/S0022029900019695.
  • Daliri, E.B-M., Oh, D.H., Lee, B.H. (2017). Bioactive peptides. Foods, 6(5): 32, doi: 10.3390/foods6050032.
  • Desmasures, N. (2014). Mold-Ripened Varieties. In: Encyclopedia of Food Microbiology, Batt, C.A. (Chief ed.), 2nd Edition, Volume 1, the UK, pp. 409-415, doi: 10.1016/B978-0-12-384730-0.00060-4.
  • Dorian, A.F. (ed.), (1978). Dictionary of science and technology. 1st Edition, Elsevier Science Publishing, New York, the USA, 1411 p.
  • Fábián, T.K., Beck, A., Fejérdy, P., Hermann, P., Fábián, G. (2015). Molecular mechanisms of taste recognition: considerations about the role of saliva. International Journal of Molecular Sciences, 16(3): 5945–5974, doi: 10.3390/ijms16035945.
  • Foegeding, E.A., Davis, J.P. (2011). Food protein functionality: A comprehensive approach. Food Hydrocolloids, 25: 1853-1864, doi: 10.1016/j.foodhyd.2011.05.008.
  • Gaudette, N.J., Pickering, G.J. (2013). Modifying bitterness in functional food systems. Critical Reviews in Food Science and Nutrition, 53(5): 464–481, doi: 10.1080/10408398.2010.542511.
  • Ghnimi, S., Kamal-Eldin, A. (2015). Casein variants and challenges in the valorization of camel milk as a healthy alternative to cow milk. Journal of Bioequivalence and Bioavailability, 7(4): 10000e67, doi: 10.4172/jbb.10000e67.
  • Giannoglou, M., Karra, Z., Platakou, E., Katsaros, G., Moatsou, G., Taoukis , P. (2016). Effect of high pressure treatment applied on starter culture or on semi-ripened cheese in the quality and ripening of cheese in brine. Innovative Food Science and Emerging Technologies, 38: 312-320, doi: 10.1016/j.ifset.2016.07.024.
  • Grygier, A., Myszka, K., Rudzińska, M. (2017). Galactomyces geotrichum – moulds from dairy products with high biotechnological potential. Acta Scientiarum Polonorum, Technologia Alimentaria, 16(1): 5-16, doi: 10.17306/J.AFS.2017.2017.0445.
  • Guichard, Salles, C. (2016). Retention and release of taste and aroma compounds from the food matrix during mastication and ingestion. In: Flavor From Food to Behaviors, Wellbeing and Health, Etiévant, P., Guichard, E., Salles, C., Voilley, A. (eds.), 1st Edition, Woodhead Publishing, the UK, pp. 3-22, ISBN-10: 0081002955.
  • Guigoz, Y., Solms, J. (1976). Bitter peptides, occurrence and structure. Chemical senses and flavor, 2(1): 71-84, doi: 10.1093/chemse/2.1.71.
  • Hajj, E., Yaacoub, R., Al-Arja, N., Scandar, S., Dib, H. (2019). Development of a culture-ripened semi-hard Kishk-cheese containing Bourghol or Semolina. Journal of Food Research, 8(1): 21-31, doi: 10.5539/jfr.v8n1p21. Jørgensen, C.E., Abrahamsen, R.K., Rukke, E-O., Hoffmann, T.K., Johansen, A-G., Skeie, S.B. (2019). Processing of high-protein yoghurt – a review. International Dairy Journal, 88: 42-59, doi: 10.1016/j.idairyj.2018.08.002.
  • Karadeniz, F. (2000). Lezzet algılama mekanizması. Gıda, 25(5): 317-324, ISSN: 1300-3070.
  • Karametsi, K., Kokkinidou, S., Ronningen, I., Peterson, D.G. (2014). Identification of bitter peptides in aged Cheddar cheese. Journal of Agricultural and Food Chemistry, 62(32): 8034-8041, doi: 10.1021/jf5020654.
  • Kazaz, Ç., Ocak, M., Mesut, B., Özsoy, Y. (2019). Ağızda dağılan tabletlerde formülasyon tasarımı ve tat değerlendirilmesi. FABAD Journal of Pharmaceutical Sciences, 44(2): 169-178.
  • Kim, K-S., Egan, J.M., Jang, H-J. (2014). Denatonium induces secretion of glucagon-like peptide-1 through activation of bitter taste receptor pathways. Diabetologia, 57: 2117–2125, doi: 10.1007/s00125-014-3326-5.
  • Krisch, J., Csanádi, J., Vágvölgyi, C. (2015). Fungi in and on dairy products. In: Fungi from Different Substrates, Misra, J.K., Tewari, J.P., Deshmukh, S.K., Vágvölgyi, C. (eds.), 1st Edition, CRC Press, Boca Raton, pp. 159-169, doi: 10.1201/b17646.
  • Lee, K.D., Lo, C.G., Warthesen, J.J. (1996). Removal of bitterness from the bitter peptides extracted from Cheddar cheese with peptidases from Lactococcus lactis ssp. cremoris SK11. Journal of Dairy Science, 79(9): 1521-1528, doi: 10.3168/jds.S0022-0302(96)76512-8.
  • Lemieux, L. Simard, R.E. (1992). Bitter flavour in dairy products. II. A review of bitter peptides from caseins: their formation, isolation and identification, structure masking and inhibition. Lait, 72(4): 335-382, doi: 10.1051/lait:1992426.
  • Liu, X., Jiang, D., Peterson, D.G. (2014). Identification of bitter peptides in whey protein hydrolysate. Journal of Agricultural and Food Chemistry, 62(25): 5719-5725, doi: 10.1021/jf4019728.
  • Ma, J-J., Mao, X-Y., Wang, Q., Yang, S., Zhang, D., Chen, S-W., Li., Y-H. (2014). Effect of spray drying and freeze drying on the immunomodulatory activity, bitter taste and hygroscopicity of hydrolysate derived from whey protein concentrate. LWT - Food Science and Technology, 56(2): 296-302, doi: 10.1016/j.lwt.2013.12.019.
  • McSweeney, P.L.H. (2007). Cheese manufacture and ripening and their influence on cheese flavour. In: Improving the flavour of cheese, Weimer, B.C. (ed.), 1st Edition, Woodhead Publishing, England, pp. 1-25.
  • Melis, M., Barbarossa, I.T. (2017). Taste perception of sweet, sour, salty, bitter, and umami and changes due to l-arginine supplementation, as a function of genetic ability to taste 6-n-propylthiouracil. Nutrients, 9(6):E541, doi: 10.3390/nu9060541.
  • Meng, F., Chen, R., Zhu, X., Lu, Y., Nie, T., Lu, F., Lu, Z. (2018). Newly effective milk-clotting enzyme from Bacillus subtilis and its application in cheese making. Journal of Agricultural and Food Chemistry, 66: 6162-6169, doi: 10.1021/acs.jafc.8b01697.
  • Miişoğlu, D., Hayoğlu, İ. (2005). Tat eşik değerlerinin algılanması, tanınması ve derecelendirilmesi. Harran Üniversitesi Ziraat Fakültesi Dergisi, 9(2): 29-35.
  • Mohammadi, R., Mahmoudzadeh, M., Atefi, M., Khosravi‐Darani K., Mozafari, M.R. (2015). Applications of nanoliposomes in cheese technology. International Journal of Dairy Technology, 68(1): 11-23, doi: 10.1111/1471-0307.12174.
  • Mohan, A., Udechukwu, M.C., Rajendran, S.R.C.K., Udenigwe, C.C. (2015). Modification of peptide functionality during enzymatic hydrolysis of whey proteins. RSC Advances, 5: 97400-97407, doi: 10.1039/C5RA15140F.
  • Nielsen, S.D., Jansson, T., Le, T.T., Jensen, S., Eggers, N., Rauh, V., Sundekilde, U.K., Sørensen, J., Andersen, H.J., Bertram, H.C., Larsen, L.B. (2017). Correlation between sensory properties and peptides derived from hydrolysed-lactose UHT milk during storage. International Dairy Journal, 68: 23-31, doi: 10.1016/j.idairyj.2016.12.013.
  • Paul, M., Nuñez, A., Van Hekken, D.L., Renye, J.A.Jr. (2014). Sensory and protein profiles of Mexican Chihuahua cheese. Journal of Food Science and Technology, 51(11): 3432-3438, doi: 10.1007/s13197-012-0868-8.
  • Poveda, J.M., Cabezas, R.C.L. (2015). Biogenic amine content and proteolysis in Manchego cheese manufactured with Lactobacillus paracasei subsp. paracasei as adjunct and other autochthonous strains as starters. International Dairy Journal, 47: 94-101, doi: 10.1016/j.idairyj.2015.03.004
  • Rauh, V.M., Johansen, L.B., Ipsen, R., Paulsson, R., Larsen, L.B., Hammershøj, M. (2014). Plasmin Activity in UHT milk: Relationship between proteolysis, age gelation, and bitterness. Journal of Agricultural and Food Chemistry, 62(28): 6852-6860, doi: 10.1021/jf502088u.
  • Sebald, K., Dunkel, A., Schäfer, J., Hinrichs, J., Hofmann, T. (2018). Sensoproteomics: A new approach for the identification of taste-active peptides in fermented foods. Journal of Agricultural and Food Chemistry, 66(42): 11092−11104, doi: 10.1021/acs.jafc.8b04479.
  • Solms, J. (1969). The taste of amino acids, peptides, and proteins. Journal of Agricultural and Food Chemistry, 17(4): 686-688, doi: 10.1021/jf60164a016.
  • Stepaniak, L. (2004). Dairy enzymology. International Journal of Dairy Technology, 57(2/3): 153-171, doi: 10.1111/j.1471-0307.2004.00144.x.
  • Teixeira, P. (2014). Lactobacillus delbrueckii ssp. bulgaricus. In: Encyclopedia of Food Microbiology, Batt, C.A. (Chief ed.), 2nd Edition, Volume 2, the UK, pp. 425-431, doi: 10.1016/B978-0-12-384730-0.00060-4.
  • Thierry, A., Valence, F., Deutsch, S.-M., Even, S., Falentin, H., Loir, Y.L., Jan, G., Gagnaire, V. (2015). Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–A review. Dairy Science and Technology, 95(6): 895-918, doi: 10.1007/s13594-015-0267-9.
  • Toelstede, S., Hofmann, T. (2008). Sensomics mapping and identification of the key bitter metabolites in Gouda cheese. Journal of Agricultural and Food Chemistry, 56(8): 2795-2804, doi: 10.1021/jf7036533.
  • Vummaneni, V., Nagpal, D. (2012). Taste masking technologies: An overview and recent updates. International Journal of Research in Pharmaceutical and Biomedical Sciences, 3(2): 510-524, ISSN: 2229-3701.
  • Widyastuti, Y., Lisdiyanti, P., Tisnadjaja, D. (2014). Role of Lactobacillus helveticus on flavor formation in cheese: Amino acid metabolism. Annales Bogorienses, 18(1): 1-11, doi: 10.14203/ann.bogor.2014.v18.n1.1-11.
  • Yarlagadda, A.B. (2014). Assessment of different novel approaches to accelerate cheese ripening for a range of applications. Ph.D. Dissertation, University of Limerick, Limerick, Ireland, 350 p.
  • Yarlagadda, A.B., Wilkinson, M.G., O'Sullivan, M.G., Kilcawley, K.N. (2014). Utilisation of microfluidisation to enhance enzymatic and metabolicpotential of lactococcal strains as adjuncts in Gouda type cheese. International Dairy Journal, 38(2): 124-132, doi: 10.1016/j.idairyj.2014.01.007.
There are 59 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Hacer Gürkan 0000-0003-3529-5710

Ali Adnan Hayaloğlu 0000-0002-4274-2729

Publication Date January 15, 2020
Published in Issue Year 2020

Cite

APA Gürkan, H., & Hayaloğlu, A. A. (2020). ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR. Gıda, 45(2), 299-314. https://doi.org/10.15237/gida.GD19151
AMA Gürkan H, Hayaloğlu AA. ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR. GIDA. January 2020;45(2):299-314. doi:10.15237/gida.GD19151
Chicago Gürkan, Hacer, and Ali Adnan Hayaloğlu. “ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR”. Gıda 45, no. 2 (January 2020): 299-314. https://doi.org/10.15237/gida.GD19151.
EndNote Gürkan H, Hayaloğlu AA (January 1, 2020) ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR. Gıda 45 2 299–314.
IEEE H. Gürkan and A. A. Hayaloğlu, “ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR”, GIDA, vol. 45, no. 2, pp. 299–314, 2020, doi: 10.15237/gida.GD19151.
ISNAD Gürkan, Hacer - Hayaloğlu, Ali Adnan. “ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR”. Gıda 45/2 (January 2020), 299-314. https://doi.org/10.15237/gida.GD19151.
JAMA Gürkan H, Hayaloğlu AA. ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR. GIDA. 2020;45:299–314.
MLA Gürkan, Hacer and Ali Adnan Hayaloğlu. “ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR”. Gıda, vol. 45, no. 2, 2020, pp. 299-14, doi:10.15237/gida.GD19151.
Vancouver Gürkan H, Hayaloğlu AA. ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR. GIDA. 2020;45(2):299-314.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/