Review
BibTex RIS Cite

NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ

Year 2020, , 1261 - 1271, 12.10.2020
https://doi.org/10.15237/gida.GD20117

Abstract

Nişasta, amiloz ve amilopektin polisakkaritlerinden meydana gelmiş, gıdalara yapısal özellikler kazandıran, beslenmemizde enerji ihtiyacımızın önemli bir kısmını karşılayan, sindirilebilir bir karbonhidrattır. Nişastaların farklı amiloz/amilopektin oranları; granüler yapıda, fiziko-kimyasal özelliklerde ve son ürün kalitesinde bazı farklılıklara sebep olmaktadır. Genellikle, normal, mumlu ve yüksek amilozlu nişastalarda amiloz/amilopektin oranı sırasıyla 25/75, 0/100 ve 70/30 olarak belirtilmiştir. Doğal nişastaların gıdalardaki kullanımı sınırlı kalmaktadır. Normal nişasta hızlı sindirilebilir olması sebebiyle gıdanın glisemik indeksini yükseltir. Yüksek amilozlu tahıl nişastaları, enzime dirençli nişasta üretiminde kullanılmaktadır. Amiloz içeriği arttıkça nişasta sindirimi de yavaşlamaktadır. Gıdaların beslenme kalitesinin farklı yapısal ve fonksiyonel özellikteki nişasta tipleri kullanılarak artırılması, beslenmeye bağlı kronik hastalıkları azaltmada etkili olabileceği belirtilmektedir. Beslenmedeki önemi dışında, nişastanın gıdalarda çirişlenme, su tutma, geçirgenlik, stabilizatör ve kıvam artırıcı özelliklerinin iyileştirilebilmesi için farklı tipte nişastalara ihtiyaç duyulmaktadır.

References

  • Abdel-Aal, E.-S.M., Huck, P., Chibbar, R.N., Han, H.L., Demeke, T. (2002). Physicochemical and structural characteristics of flours and starches from waxy and nonwaxy wheats. Cereal Chem, 79(3): 458–464.
  • Ahmed, Z., Tetlow, I.J., Falk, D.E., Liu, Q., Emes, M.J. (2016). Resistant starch content is related to granule size in barley. Cereal Chem, 93(6): 618-630.
  • Ai, Y., Jane, J-I. (2016). Macronutrients in corn and human nutrition. Compr Rev Food Sci Food Saf, 15(3): 581-598.
  • Bird, A.R., Regina, A. (2018). High amylose wheat: A platform for delivering human health benefits. J Cereal Sci, 82: 99-105.
  • Choi, H.-W., Baik, B.-K. (2014). Significance of starch properties and quantity on sponge cake volume. Cereal Chem, 91(3): 280–285.
  • Dupuis, J.H., Liu, Q., Yada, R.Y. (2014). Methodologies for increasing the resistant starch content of food starches: A review. Compr Rev Food Sci Food Saf, 13(6): 1219-1234.
  • Eliasson, A.-C., Bergenstal, B., Nilsson, L., Sjöö, M. (2013). From molecules to products: Some aspects of structure-function relationships in cereal starches. Cereal Chem, 90(4): 326-334.
  • Fleischman, E.F., Kowalski, R.J., Morris, C.F., Nguyen, T., Li, C., Ganjyal, G., Ross, C.F. (2016). Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran. J Food Sci, 81(11): E2726-E2733.
  • Garimella Purna, S.K., Shi, Y.-C., Guan, L., Wilson, J.D., Graybosch, R.A. (2015). Factors governing pasting properties of waxy wheat flours. Cereal Chemistry, 92(5): 529-535.
  • Graybosch, R.A., Ohm, J.-B., Dykes, L. (2016). Observations on the quality characteristics of waxy (amylose-free) winter wheats. Cereal Chem, 93(6): 599-604.
  • Hogg, A.C., Martin, J.M., Manthey, F.A., Giroux, M.J. (2015). Nutritional and quality traits of pasta made from SSIIa null high-amylose durum wheat. Cereal Chem, 92(4): 395-400.
  • Hsieh, C.-F., Liu, W., Whaley, J. K., Shi, Y.-C. (2019). Structure and functional properties of waxy starches. Food Hydrocoll, 94: 238-254.
  • Hung, P.V., Maeda, T., Morita, N. (2006). Waxy and high-amylose wheat starches and flours-characteristics, functionality and application. Trends Food Sci Technol, 17(8): 448–456.
  • Hung, P.V., Maeda, T., Morita, N. (2007). Study on physicochemical characteristics of waxy and high amylose wheat starches in comparison with normal wheat starch. Starke, 59(3-4): 125-131.
  • Inokuma, T., Vrinten, P., Shimbata, T., Sunohara, A., Ito, H., Saito, M., Taniguchi, Y., Nakamura, T. (2016). Using the hexaploid nature of wheat to create variability in starch characteristics. J Agric Food Chem, 64(4): 941-947.
  • Jung, T.-H., Kim J.Y., Baik, B.-K., Park, C.S. (2015). Physicochemical and thermal characteristics of starch isolated from a waxy wheat genotype exhibiting partial expression of wx proteins. Cereal Chem, 92(1): 14-21.
  • Kim, H.R., Jun Choi, S., Choi, H.-D., Park, C.-S., Moon, T.W. (2020). Amylosucrase-modified waxy potato starches recrystallized with amylose: the role of amylopectin chain length in formation of low-digestible fractions. Food Chem, 318: 126490. Kong, X., Kasapis, S., Zhu, P., Sui, Z., Bao, J., Corke, H. (2016). Physicochemical and structural characteristics of starches from Chinese hull-less barley cultivars. Int J Food Sci Technol, 51(2): 509-518.
  • Lee, H., Kim, H.-S. (2020). Pasting and paste properties of waxy rice starch as affected by hydroxypropyl methylcellulose and its viscosity. Int J Biol Macromol, 153: 1202-1210.
  • Li, C., Zhou, D., Fan, T., Wang, M., Zhu, M., Ding, J.,Zhu, X., Guo, W., Shi, Y.-C. (2020a). Structure and physicochemical properties of two waxy wheat starches. Food Chem, 318, 126492. Li, C., Dhital, S., Gilbert, R. G., Gidley, M. J. (2020b). High-amylose wheat starch: structural basis for water absorption and pasting properties. Carbohydr Polym, 245, 116557.
  • Li, H., Dhital, S., Flanagan, B. M., Mata, J., Gilbert, E. P., Gidley, M. J. (2020). High-amylose wheat and maize starches have distinctly different granule organization and annealing behaviour: A key role for chain mobility. Food Hydrocoll, 105, 105820.
  • Liu, L., Zhang, H., Li, X., Han, X., Qu, X., Chen, P., Wang, H., Wang, L. (2018). Effect of waxy rice starch on textural and microstructural properties of microwave-puffed cheese chips. Int J Dairy Technol, 71(2): 501-511.
  • Lu, L., Baik, B.-K. (2015). Starch characteristics influencing resistant starch content of cooked buckwheat groats. Cereal Chem, 92(1): 65-72.
  • Luo, Y., Xiao, Y., Shen, M., Wen, H., Ren, Y., Yang, J., Han X, Xie, J. (2020). Effect of Mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage. Food Hydrocoll, 101, 105538.
  • Magallanes-Cruz, P.A., Flores-Silva, P.C., Bello-Perez L.A. (2017). Starch structure influences its digestibility: A Review. J Food Sci, 82(9): 2016-2023.
  • Mahmood, K., Kamilah, H., Shang, P.L., Sulaiman, S., Ariffin, F., Alias, A.K. (2017). A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosci, 19: 110-120.
  • Masatcioglu, T.M., Sumer, Z., Koksel, H. (2017). An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion. J Cereal Sci, 74: 95-102.
  • Nivelle, M.A., Remmerie, E., Bosmans, G.M., Vrinten, P., Nakamura, T., Delcour, J.A. (2019). Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chem, 295: 110-119.
  • Park, E.Y., Kim, H.N., Kim, J.Y., Lim, S.T. (2009). Pasting properties of potato starch and waxy maize starch mixtures. Stärke, 61(6): 352-357.
  • Precha-Atsawanan, S., Puncha-Arnon, S., Wandee, Y., Uttapap, D., Puttanlek, C., Rungsardthong, V. (2018) Physicochemical properties of partially debranched waxy rice starch. Food Hydrocoll, 79: 71-80.
  • Qiao, D., Xie, F., Zhang, B., Zou, W., Zhao, S., Niu, M., Lv, R., Cheng, Q., Jiang, F., Zhu, J. (2017). A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocoll, 65: 24-34.
  • Samarakoon, E. R. J., Waduge, R., Liu, Q., Shahidi, F., Banoub, J. H. (2020). Impact of annealing on the hierarchical structure and physicochemical properties of waxy starches of different botanical origins. Food Chem, 303, 125344.
  • Šárka, E., Dvořáček, V. (2017). Waxy starch as a perspective raw material (a review). Food Hydrocoll, 69: 402-409.
  • Shevkani, K., Singh, N., Bajaj, R., Kaur, A. (2017). Wheat starch production, structure, functionality and applications-A review. Int J Food Sci Technology, 52(1): 38-58.
  • Singh, N., Inouchi, N., Nishinari, K. (2006). Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocoll, 20(6): 923–935.
  • Situ, W., Song, X., Luo, S., Yang, J. (2019). Digestibility and structures of vinasse starches with different types of raw rice and fermented leaven. Food Chem, 294: 96–103.
  • Su, C., Saleh, A. S. M., Zhang, B., Zhao, K., Ge, X., Zhang, Q., Li, W. (2020). Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing. Carbohydr Polym, 247, 116675.
  • Sui, Z., Yao, T., Ye, X., Bao, J., Kong, X., Wu, Y. (2017). Physicochemical properties and starch digestibility of in-kernel eat-moisture-treated waxy, low-, and high-amylose rice starch. Stärke, 69(7-8): 1600164.
  • Syihus, B., Uhlen, A.K., Harstad, O.M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim Feed Sci Technol, 122(3-4): 303–320.
  • Vamadevan, V., Bertoft, E. (2018). Impact of different structural types of amylopectin on retrogradation. Food Hydrocoll, 80: 88–96.
  • Wang, W., Shi, Y.-C. (2020). Gelatinization, pasting and retrogradation properties of hydroxypropylated normal wheat, waxy wheat, and waxy maize starches. Food Hydrocoll, 106, 105910.
  • Weil, W., Weil, R. C., Keawsompong, S., Sriroth, K., Seib, P. A., Shi, Y.-C. (2020). Pyrodextrin from waxy and normal tapioca starches: Physicochemical properties. Food Hydrocoll, 104, 105745.
  • Witczak, M., Korus, J., Ziobro, R., Juszczak, L. (2019). Waxy starch as dough component and anti-staling agent in gluten-free bread. LWT-Food Sci Technol, 99: 476-482.
  • Xu, J., Chen, L., Guo, X., Liang, Y., Xie, F. (2020). Understanding the multi-scale structure and digestibility of different waxy maize starches. Int J Biol Macromol, 144: 252-258.
  • Yoo, H.J., Kim, H.R., Choi, S.J., Park, C.-S., Moon, T.W. (2018). Characterisation of low-digestible starch fractions isolated from amylosucrase-modified waxy corn starch. Int J Food Sci Technol, 53(3): 557-563.
  • Zhang, B., Dhital, S., Flanagan, B.M., Luckman, P., Halley, P.J., Gidley, M.J. (2015). Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure. Carbohydr Polym, 134, 485-496.
  • Zhang, Y., Gladden, I., Guo, J., Tan, L., Kong, L. (2020). Enzymatic digestion of amylose and high amylose maize starch inclusion complexes with alkyl gallates. Food Hydrocoll, 108, 106009.
  • Zhong, Y., Zhu, H., Liang, W., Li, X., Liu, L., Zhang, X., Yue, H., Xue, J., Liu, X., Guo, D. (2018). High-amylose starch as a new ingredient to balance nutrition and texture of food. J Cereal Sci, 81: 8-14.
  • Zhu, F. (2017). Barley starch: Composition, structure, properties, and modifications. Compr Rev in Food Sci Food Saf, 16(4): 558-579.

NORMAL, WAXY AND HIGH-AMYLOSE STARCHES AND THEIR FUNCTIONAL PROPERTIES IN FOODS

Year 2020, , 1261 - 1271, 12.10.2020
https://doi.org/10.15237/gida.GD20117

Abstract

Starch, which is consisting of amylose and amylopectin polysaccharides, gives textural properties to food products, and provides the most of the energy in our nutrition, and is a digestible carbohydrate. Different amylose/amylopectin ratios in starch structure cause some distinctions in granular structure, physicochemical properties, and final product quality. Generally, amylose/amylopectin ratios of normal, waxy, and high amylose starches are indicated as 25/75, 0/100 and 70/30, respectively. The utilization of native starches in foods is limited. Normal starch, which is rapidly digestible, raises the glycaemic index of food. High-amylose cereal starches are used in the production of enzyme resistant starch. An increase in amylose content slows down the starch digestibility. An increase in nutritional quality of foods using starch types having different structural and functional properties exhibits a great impact on decreasing chronic diseases depended on nutrition. In addition to nutritional importance, to improve the pasting, water holding, transmittance, stabilization, and thickening properties of starch in foods, the different starch types are required.

References

  • Abdel-Aal, E.-S.M., Huck, P., Chibbar, R.N., Han, H.L., Demeke, T. (2002). Physicochemical and structural characteristics of flours and starches from waxy and nonwaxy wheats. Cereal Chem, 79(3): 458–464.
  • Ahmed, Z., Tetlow, I.J., Falk, D.E., Liu, Q., Emes, M.J. (2016). Resistant starch content is related to granule size in barley. Cereal Chem, 93(6): 618-630.
  • Ai, Y., Jane, J-I. (2016). Macronutrients in corn and human nutrition. Compr Rev Food Sci Food Saf, 15(3): 581-598.
  • Bird, A.R., Regina, A. (2018). High amylose wheat: A platform for delivering human health benefits. J Cereal Sci, 82: 99-105.
  • Choi, H.-W., Baik, B.-K. (2014). Significance of starch properties and quantity on sponge cake volume. Cereal Chem, 91(3): 280–285.
  • Dupuis, J.H., Liu, Q., Yada, R.Y. (2014). Methodologies for increasing the resistant starch content of food starches: A review. Compr Rev Food Sci Food Saf, 13(6): 1219-1234.
  • Eliasson, A.-C., Bergenstal, B., Nilsson, L., Sjöö, M. (2013). From molecules to products: Some aspects of structure-function relationships in cereal starches. Cereal Chem, 90(4): 326-334.
  • Fleischman, E.F., Kowalski, R.J., Morris, C.F., Nguyen, T., Li, C., Ganjyal, G., Ross, C.F. (2016). Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran. J Food Sci, 81(11): E2726-E2733.
  • Garimella Purna, S.K., Shi, Y.-C., Guan, L., Wilson, J.D., Graybosch, R.A. (2015). Factors governing pasting properties of waxy wheat flours. Cereal Chemistry, 92(5): 529-535.
  • Graybosch, R.A., Ohm, J.-B., Dykes, L. (2016). Observations on the quality characteristics of waxy (amylose-free) winter wheats. Cereal Chem, 93(6): 599-604.
  • Hogg, A.C., Martin, J.M., Manthey, F.A., Giroux, M.J. (2015). Nutritional and quality traits of pasta made from SSIIa null high-amylose durum wheat. Cereal Chem, 92(4): 395-400.
  • Hsieh, C.-F., Liu, W., Whaley, J. K., Shi, Y.-C. (2019). Structure and functional properties of waxy starches. Food Hydrocoll, 94: 238-254.
  • Hung, P.V., Maeda, T., Morita, N. (2006). Waxy and high-amylose wheat starches and flours-characteristics, functionality and application. Trends Food Sci Technol, 17(8): 448–456.
  • Hung, P.V., Maeda, T., Morita, N. (2007). Study on physicochemical characteristics of waxy and high amylose wheat starches in comparison with normal wheat starch. Starke, 59(3-4): 125-131.
  • Inokuma, T., Vrinten, P., Shimbata, T., Sunohara, A., Ito, H., Saito, M., Taniguchi, Y., Nakamura, T. (2016). Using the hexaploid nature of wheat to create variability in starch characteristics. J Agric Food Chem, 64(4): 941-947.
  • Jung, T.-H., Kim J.Y., Baik, B.-K., Park, C.S. (2015). Physicochemical and thermal characteristics of starch isolated from a waxy wheat genotype exhibiting partial expression of wx proteins. Cereal Chem, 92(1): 14-21.
  • Kim, H.R., Jun Choi, S., Choi, H.-D., Park, C.-S., Moon, T.W. (2020). Amylosucrase-modified waxy potato starches recrystallized with amylose: the role of amylopectin chain length in formation of low-digestible fractions. Food Chem, 318: 126490. Kong, X., Kasapis, S., Zhu, P., Sui, Z., Bao, J., Corke, H. (2016). Physicochemical and structural characteristics of starches from Chinese hull-less barley cultivars. Int J Food Sci Technol, 51(2): 509-518.
  • Lee, H., Kim, H.-S. (2020). Pasting and paste properties of waxy rice starch as affected by hydroxypropyl methylcellulose and its viscosity. Int J Biol Macromol, 153: 1202-1210.
  • Li, C., Zhou, D., Fan, T., Wang, M., Zhu, M., Ding, J.,Zhu, X., Guo, W., Shi, Y.-C. (2020a). Structure and physicochemical properties of two waxy wheat starches. Food Chem, 318, 126492. Li, C., Dhital, S., Gilbert, R. G., Gidley, M. J. (2020b). High-amylose wheat starch: structural basis for water absorption and pasting properties. Carbohydr Polym, 245, 116557.
  • Li, H., Dhital, S., Flanagan, B. M., Mata, J., Gilbert, E. P., Gidley, M. J. (2020). High-amylose wheat and maize starches have distinctly different granule organization and annealing behaviour: A key role for chain mobility. Food Hydrocoll, 105, 105820.
  • Liu, L., Zhang, H., Li, X., Han, X., Qu, X., Chen, P., Wang, H., Wang, L. (2018). Effect of waxy rice starch on textural and microstructural properties of microwave-puffed cheese chips. Int J Dairy Technol, 71(2): 501-511.
  • Lu, L., Baik, B.-K. (2015). Starch characteristics influencing resistant starch content of cooked buckwheat groats. Cereal Chem, 92(1): 65-72.
  • Luo, Y., Xiao, Y., Shen, M., Wen, H., Ren, Y., Yang, J., Han X, Xie, J. (2020). Effect of Mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage. Food Hydrocoll, 101, 105538.
  • Magallanes-Cruz, P.A., Flores-Silva, P.C., Bello-Perez L.A. (2017). Starch structure influences its digestibility: A Review. J Food Sci, 82(9): 2016-2023.
  • Mahmood, K., Kamilah, H., Shang, P.L., Sulaiman, S., Ariffin, F., Alias, A.K. (2017). A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. Food Biosci, 19: 110-120.
  • Masatcioglu, T.M., Sumer, Z., Koksel, H. (2017). An innovative approach for significantly increasing enzyme resistant starch type 3 content in high amylose starches by using extrusion. J Cereal Sci, 74: 95-102.
  • Nivelle, M.A., Remmerie, E., Bosmans, G.M., Vrinten, P., Nakamura, T., Delcour, J.A. (2019). Amylose and amylopectin functionality during baking and cooling of bread prepared from flour of wheat containing unusual starches: A temperature-controlled time domain 1H NMR study. Food Chem, 295: 110-119.
  • Park, E.Y., Kim, H.N., Kim, J.Y., Lim, S.T. (2009). Pasting properties of potato starch and waxy maize starch mixtures. Stärke, 61(6): 352-357.
  • Precha-Atsawanan, S., Puncha-Arnon, S., Wandee, Y., Uttapap, D., Puttanlek, C., Rungsardthong, V. (2018) Physicochemical properties of partially debranched waxy rice starch. Food Hydrocoll, 79: 71-80.
  • Qiao, D., Xie, F., Zhang, B., Zou, W., Zhao, S., Niu, M., Lv, R., Cheng, Q., Jiang, F., Zhu, J. (2017). A further understanding of the multi-scale supramolecular structure and digestion rate of waxy starch. Food Hydrocoll, 65: 24-34.
  • Samarakoon, E. R. J., Waduge, R., Liu, Q., Shahidi, F., Banoub, J. H. (2020). Impact of annealing on the hierarchical structure and physicochemical properties of waxy starches of different botanical origins. Food Chem, 303, 125344.
  • Šárka, E., Dvořáček, V. (2017). Waxy starch as a perspective raw material (a review). Food Hydrocoll, 69: 402-409.
  • Shevkani, K., Singh, N., Bajaj, R., Kaur, A. (2017). Wheat starch production, structure, functionality and applications-A review. Int J Food Sci Technology, 52(1): 38-58.
  • Singh, N., Inouchi, N., Nishinari, K. (2006). Structural, thermal and viscoelastic characteristics of starches separated from normal, sugary and waxy maize. Food Hydrocoll, 20(6): 923–935.
  • Situ, W., Song, X., Luo, S., Yang, J. (2019). Digestibility and structures of vinasse starches with different types of raw rice and fermented leaven. Food Chem, 294: 96–103.
  • Su, C., Saleh, A. S. M., Zhang, B., Zhao, K., Ge, X., Zhang, Q., Li, W. (2020). Changes in structural, physicochemical, and digestive properties of normal and waxy wheat starch during repeated and continuous annealing. Carbohydr Polym, 247, 116675.
  • Sui, Z., Yao, T., Ye, X., Bao, J., Kong, X., Wu, Y. (2017). Physicochemical properties and starch digestibility of in-kernel eat-moisture-treated waxy, low-, and high-amylose rice starch. Stärke, 69(7-8): 1600164.
  • Syihus, B., Uhlen, A.K., Harstad, O.M. (2005). Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim Feed Sci Technol, 122(3-4): 303–320.
  • Vamadevan, V., Bertoft, E. (2018). Impact of different structural types of amylopectin on retrogradation. Food Hydrocoll, 80: 88–96.
  • Wang, W., Shi, Y.-C. (2020). Gelatinization, pasting and retrogradation properties of hydroxypropylated normal wheat, waxy wheat, and waxy maize starches. Food Hydrocoll, 106, 105910.
  • Weil, W., Weil, R. C., Keawsompong, S., Sriroth, K., Seib, P. A., Shi, Y.-C. (2020). Pyrodextrin from waxy and normal tapioca starches: Physicochemical properties. Food Hydrocoll, 104, 105745.
  • Witczak, M., Korus, J., Ziobro, R., Juszczak, L. (2019). Waxy starch as dough component and anti-staling agent in gluten-free bread. LWT-Food Sci Technol, 99: 476-482.
  • Xu, J., Chen, L., Guo, X., Liang, Y., Xie, F. (2020). Understanding the multi-scale structure and digestibility of different waxy maize starches. Int J Biol Macromol, 144: 252-258.
  • Yoo, H.J., Kim, H.R., Choi, S.J., Park, C.-S., Moon, T.W. (2018). Characterisation of low-digestible starch fractions isolated from amylosucrase-modified waxy corn starch. Int J Food Sci Technol, 53(3): 557-563.
  • Zhang, B., Dhital, S., Flanagan, B.M., Luckman, P., Halley, P.J., Gidley, M.J. (2015). Extrusion induced low-order starch matrices: Enzymic hydrolysis and structure. Carbohydr Polym, 134, 485-496.
  • Zhang, Y., Gladden, I., Guo, J., Tan, L., Kong, L. (2020). Enzymatic digestion of amylose and high amylose maize starch inclusion complexes with alkyl gallates. Food Hydrocoll, 108, 106009.
  • Zhong, Y., Zhu, H., Liang, W., Li, X., Liu, L., Zhang, X., Yue, H., Xue, J., Liu, X., Guo, D. (2018). High-amylose starch as a new ingredient to balance nutrition and texture of food. J Cereal Sci, 81: 8-14.
  • Zhu, F. (2017). Barley starch: Composition, structure, properties, and modifications. Compr Rev in Food Sci Food Saf, 16(4): 558-579.
There are 48 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Erkan Yalçın 0000-0002-7417-9088

Mustafa Tuğrul Masatcıoğlu 0000-0002-2583-8796

Betül Cındık 0000-0001-9765-9861

Publication Date October 12, 2020
Published in Issue Year 2020

Cite

APA Yalçın, E., Masatcıoğlu, M. T., & Cındık, B. (2020). NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ. Gıda, 45(6), 1261-1271. https://doi.org/10.15237/gida.GD20117
AMA Yalçın E, Masatcıoğlu MT, Cındık B. NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ. GIDA. October 2020;45(6):1261-1271. doi:10.15237/gida.GD20117
Chicago Yalçın, Erkan, Mustafa Tuğrul Masatcıoğlu, and Betül Cındık. “NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ”. Gıda 45, no. 6 (October 2020): 1261-71. https://doi.org/10.15237/gida.GD20117.
EndNote Yalçın E, Masatcıoğlu MT, Cındık B (October 1, 2020) NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ. Gıda 45 6 1261–1271.
IEEE E. Yalçın, M. T. Masatcıoğlu, and B. Cındık, “NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ”, GIDA, vol. 45, no. 6, pp. 1261–1271, 2020, doi: 10.15237/gida.GD20117.
ISNAD Yalçın, Erkan et al. “NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ”. Gıda 45/6 (October 2020), 1261-1271. https://doi.org/10.15237/gida.GD20117.
JAMA Yalçın E, Masatcıoğlu MT, Cındık B. NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ. GIDA. 2020;45:1261–1271.
MLA Yalçın, Erkan et al. “NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ”. Gıda, vol. 45, no. 6, 2020, pp. 1261-7, doi:10.15237/gida.GD20117.
Vancouver Yalçın E, Masatcıoğlu MT, Cındık B. NORMAL, MUMLU (WAXY) VE YÜKSEK AMİLOZLU NİŞASTALAR VE GIDALARDAKİ FONKSİYONEL ÖZELLİKLERİ. GIDA. 2020;45(6):1261-7.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/