Research Article
BibTex RIS Cite

ANTIMICROBIAL AND ANTIOXIDANT PROPERTIES OF THYME (Thymus vulgaris L.), ROSEMARY (Rosmarinus officinalis L.) AND LAUREL (Lauris nobilis L.) ESSENTIAL OILS AND THEIR MIXTURES

Year 2017, Volume: 42 Issue: 5, 588 - 596, 10.08.2017

Abstract

In this study, the antimicrobial and antioxidant properties
of thyme (TEO), rosemary (REO) and laurel essential oils (LEO) and their
mixtures (TEO/REO, TEO/LEO, REO/LEO, 1/1, v/v and TEO/REO/LEO, v/v/v, 1/1/1)
were investigated. The antimicrobial activity was measured by agar well
diffusion method, while antioxidant capacity was measured FRAP and DPPH scavenging
activity methods. All essential oils and their mixtures showed antimicrobial
activity and antioxidant capacity. The highest antimicrobial activity against S. aureus, E. coli O157:H7 and L.
monocytogenes
was determined in TEO with zone diameters of 39.33, 28.00 and
30.67 mm, respectively. In general, essential oil mixtures negatively affected
the antimicrobial activity compared to essential oils alone, and E. coli O157:H7 was less sensitive to
the inhibitory activity of essential oils and their mixtures than S. aureus and L. monocytogenes. The FRAP values of all essential oils and
mixtures ranged from 3.67 (REO) to 40.30 mg/mL (LEO), while the DPPH scavenging
activity values ranged from 21.31 (REO) to 89.48% (TEO/LEO). These results
suggested that essential oils obtained from thyme, rosemary, laurel and their
mixtures have potential to be used as natural antimicrobial and antioxidant
agents in food industry.

References

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol, 94(3): 223-253.
  • Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem, 91(4): 621-632.
  • Santoyo, S., Lloria, R., Jaime, L., Ibanez, E., Senorans, F.J., Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. chemical and functional characterization. Eur Food Res Technol, 222(5-6): 565-571.
  • Pokorny, J. (1991). Natural antioxidants for food use. Trends Food Sci Tech, 2: 223-227.
  • Zaouali, Y., Bouzaine, T., Boussaid, M. (2010). Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol, 48(11): 3144-3152.
  • Lin, C.W., Yu, C.W., Wu, S.C., Yih, K.H. (2009). DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J Food Drug Anal, 17(5): 386-395.
  • Bayaz, M. (2014). Esansiyel yağlar: antimikrobiyal, antioksidan ve antimutajenik aktiviteleri. Akademik Gıda, 12(3): 45-53.
  • Toroğlu, S., Çenet, M. (2006). Tedavi amaçlı kullanılan bazı bitkilerin kullanım alanları ve antimikrobiyal aktivitelerinin belirlenmesi için kullanılan metodlar. KSÜ Fen ve Mühendislik Dergisi, 9(2): 12-19.
  • Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Sci Nutr, 2(4): 403-416.
  • Dadalioǧlu, I., Akdemir Evrendilek, G. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem, 52(26): 8255-8260.
  • Önenç, S.S., Açıkgöz, Z. (2005). Aromatik bitkilerin hayvansal ürünlerde antioksidan etkileri. Hayvansal Üretim, 46(1): 50-55.
  • Lee, S.J., Umano, K., Shibamoto, T., Lee, K.G. (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem, 91(1): 131-137.
  • Bozin, B., Mimica-Dukic, N., Simin, N., Anackov, G. (2006). Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem, 54(5): 1822-1828.
  • Youdim, K.A., Deans, S.G. (2000). Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Brit J Nutr, 83(1): 87-93.
  • Ouattara, B., Sabato, S.F., Lacroix, M. (2001). Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). Int J Food Microbiol, 68(1-2): 1-9.
  • Ruberto, G., Baratta, M.T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem, 69(2): 167-174.
  • Perez, M.B., Calderon, N.L., Croci, C.A. (2007). Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem, 104(2): 585-592.
  • Özcan, M.M., Chalchat, J.C. (2008). Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int J Food Sci Nutr, 59(7-8): 691-698.
  • Gachkar, L., Yedegari, D., Rezaei, M.B., Taghizadeh, M., Astaneh, S.A., Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem, 102(3): 898-904.
  • Genena, A.K., Hense, H., Smania Junior, A., Souza, S.M.D. (2008). Rosemary (Rosmarinus officinalis): a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Food Sci Technol (Campinas), 28(2): 463-469.
  • Ojeda-Sana, A.M., van Baren, C.M., Elechosa, M.A., Juarez, M.A., Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31(1): 189-195.
  • Erkmen, O., Özcan, M.M. (2008). Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic food-related microorganisms. J Med Food, 11(3): 587-592.
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N.R., Nogueira, J.M.F., Nunes, M.L., Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat Prod Res, 26(6): 518-529.
  • El, S.N., Karagozlu, N., Karakaya, S., Sahin, S. (2014). Antioxidant and antimicrobial activities of essential oils extracted from Laurus nobilis L. leaves by using solvent-free microwave and hydrodistillation. Food Nutr Sci, 5(2): 97-106.
  • Rather, M.A., Dar, B.A., Dar, M.Y., Wani, B.A., Shah, W.A., Bhat, B.A., Ganai, B.A., Bhat, K.A., Anand, R., Qurishi, M.A. (2012). Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine, 19(13): 1185-1190.
  • Gao, X., Björk, L., Trajkovski, V., Uggla, M. (2000). Evaluation of antioxidant actives of rosehip ethanol extracts in different test systems. J Agric Food Chem, 80(14): 2021-2027.
  • Nakajima, J., Tanaka, I., Seo, S., Yamazaki, M., Saito, K. (2004). LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J Biomed Biotechnol, 2004(5): 241-247.
  • Cosentino, S., Tuberoso, C.I.G., Pisano, B., Satta, M.L., Mascia, V., Arzedi, E., Palmas, F. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian thymus essential oils. Lett Appl Microbiol, 29(2): 130-135.
  • Lambert, R.J.W., Skandamis, P.N., Coote, P.J., Nychas, G.J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol, 91(3): 453-462.
  • Celikel, N., Kavas, G. (2008). Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech J Food Sci, 26(3): 174-181.
  • Abdullah, B.H., Hatem, S.F., Jumaa, W. (2015). A comparative study of the antibacterial activity of clove and rosemary essential oils on multidrug resistant bacteria. UK J Pharm Biosci, 3(1), 18-22.
  • Miladi, H., Slama, R.B., Mili, D., Zouari, S., Bakhrouf, A. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Nat Sci, 5(6): 729-739.
  • Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1): 177-183.
  • Saǧdιç, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT-Food Sci Technol, 36(5): 467-473.
  • Fu, Y., Zu, Y., Chen, L., Shi, X., Wang, Z., Sun, S., Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res, 21(10): 989-994.
  • Yilmaz, E.S., Timur, M., Aslim, B. (2013). Antimicrobial, antioxidant activity of the essential oil of Bay Laurel from Hatay, Turkey. J Essent Oil Bear Pl, 16(1): 108-116.
  • Ekren, S., Yerlikaya, O., Tokul, H.E., Akpınar, A., Accedil, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr J Microbiol Res, 7(5): 383-388.
  • Kon, K., Rai, M. (2012). Antibacterial activity of Thymus vulgaris essential oil alone and in combination with other essential oils. Nus Biosci, 4(2): 50-56.
  • Prusinowska, R., Smigielski, K. (2015). Losses of essential oils and antioxidants during the drying of herbs and spices. A review. Nauki Inżynierskie i Technologie, 2(17): 51-62.
  • Yanishlieva-Maslarova, N.V., Heinonen, I.M. (2001). Sources of natural antioxidants: vegetables, fruits, herbs, spices and teas. In: Antioxidants in foods, Pokorny, J., Yanislieva, N., Gordon, M. (eds), CRC Press, Cambridge, the UK, pp. 210-263.
  • Üstün, N.Ş., Turhan, S. (1999). Yağ oksidasyonu ve antioksidanlar. OMÜ Ziraat Fakültesi Yardımcı Ders Notu, No:11, Samsun, Türkiye, 81 s.
  • Basmacıoğlu Malayoğlu, H., Aktaş, B., Yeşil Çeliktaş, Ö. (2011). Bazı bitki türlerinden elde edilen uçucu yağların toplam fenol içerikleri ve antioksidan aktiviteleri. Ege Üniv Ziraat Fak Derg, 48(3): 211-215.
  • Fadda, A., Serra, M., Molinu, M.G., Azara, E., Barberis, A., Sanna, D. (2014). Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical. J Food Comp Anal, 35(2): 112-119.

KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ

Year 2017, Volume: 42 Issue: 5, 588 - 596, 10.08.2017

Abstract

Bu
çalışmada, kekik (KUY), biberiye (BUY) ve defne uçucu yağlarının (DUY) ve karışımlarının
(KUY/BUY, KUY/DUY, BUY/DUY, 1/1, v/v ve KUY/BUY/DUY, v/v/v, 1/1/1) antimikrobiyal
ve antioksidan özellikleri araştırılmıştır. Uçucu yağların antimikrobiyal
aktiviteleri agar kuyu difüzyon metodu ile belirlenirken, antioksidan kapasiteleri,
FRAP ve DPPH radikal söndürücü kapasite yöntemleri ile belirlenmiştir.
İncelenen tüm uçucu yağlar ve karışımları antimikrobiyal aktivite ve
antioksidan kapasite göstermiştir. S.
aureus
, E. coli O157: H7 ve L. monocytogenes'e karşı en yüksek
antimikrobiyal aktivite, sırasıyla 39.33, 28.00 ve 30.67 mm zon çapı ile KUY’de
belirlenmiştir. Genel olarak, uçucu yağ karışımları, tek başına uçucu yağlara oranla
antimikrobiyal aktiviteyi negatif etkilemiş ve E. coli O157: H7, uçucu yağ ve karışımlarının inhibitör etkisine S. aureus ve L. monocytogenes'den daha az duyarlı olmuştur. Uçucu yağ ve
karışımlarının FRAP değerleri 3.67 (BUY) ile 40.30 mg/mL (DUY), DPPH radikal
söndürücü kapasite değerleri ise %21.31 (BUY) ile 89.48 (KUY/DUY) arasında
belirlenmiştir. Bu sonuçlar kekik, biberiye ve defneden elde edilen uçucu yağların
ve karışımlarının gıda endüstrisinde doğal antimikrobiyal ve antioksidan ajan
olarak kullanım potansiyeline sahip olduğunu ortaya koymuştur.  

References

  • Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods-a review. Int J Food Microbiol, 94(3): 223-253.
  • Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem, 91(4): 621-632.
  • Santoyo, S., Lloria, R., Jaime, L., Ibanez, E., Senorans, F.J., Reglero, G. (2006). Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurus nobilis L. chemical and functional characterization. Eur Food Res Technol, 222(5-6): 565-571.
  • Pokorny, J. (1991). Natural antioxidants for food use. Trends Food Sci Tech, 2: 223-227.
  • Zaouali, Y., Bouzaine, T., Boussaid, M. (2010). Essential oils composition in two Rosmarinus officinalis L. varieties and incidence for antimicrobial and antioxidant activities. Food Chem Toxicol, 48(11): 3144-3152.
  • Lin, C.W., Yu, C.W., Wu, S.C., Yih, K.H. (2009). DPPH free-radical scavenging activity, total phenolic contents and chemical composition analysis of forty-two kinds of essential oils. J Food Drug Anal, 17(5): 386-395.
  • Bayaz, M. (2014). Esansiyel yağlar: antimikrobiyal, antioksidan ve antimutajenik aktiviteleri. Akademik Gıda, 12(3): 45-53.
  • Toroğlu, S., Çenet, M. (2006). Tedavi amaçlı kullanılan bazı bitkilerin kullanım alanları ve antimikrobiyal aktivitelerinin belirlenmesi için kullanılan metodlar. KSÜ Fen ve Mühendislik Dergisi, 9(2): 12-19.
  • Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., Clinquart, A. (2014). Antimicrobial activities of commercial essential oils and their components against food‐borne pathogens and food spoilage bacteria. Food Sci Nutr, 2(4): 403-416.
  • Dadalioǧlu, I., Akdemir Evrendilek, G. (2004). Chemical compositions and antibacterial effects of essential oils of Turkish oregano (Origanum minutiflorum), bay laurel (Laurus nobilis), Spanish lavender (Lavandula stoechas L.), and fennel (Foeniculum vulgare) on common foodborne pathogens. J Agric Food Chem, 52(26): 8255-8260.
  • Önenç, S.S., Açıkgöz, Z. (2005). Aromatik bitkilerin hayvansal ürünlerde antioksidan etkileri. Hayvansal Üretim, 46(1): 50-55.
  • Lee, S.J., Umano, K., Shibamoto, T., Lee, K.G. (2005). Identification of volatile components in basil (Ocimum basilicum L.) and thyme leaves (Thymus vulgaris L.) and their antioxidant properties. Food Chem, 91(1): 131-137.
  • Bozin, B., Mimica-Dukic, N., Simin, N., Anackov, G. (2006). Characterization of the volatile composition of essential oils of some Lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem, 54(5): 1822-1828.
  • Youdim, K.A., Deans, S.G. (2000). Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Brit J Nutr, 83(1): 87-93.
  • Ouattara, B., Sabato, S.F., Lacroix, M. (2001). Combined effect of antimicrobial coating and gamma irradiation on shelf life extension of pre-cooked shrimp (Penaeus spp.). Int J Food Microbiol, 68(1-2): 1-9.
  • Ruberto, G., Baratta, M.T. (2000). Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem, 69(2): 167-174.
  • Perez, M.B., Calderon, N.L., Croci, C.A. (2007). Radiation-induced enhancement of antioxidant activity in extracts of rosemary (Rosmarinus officinalis L.). Food Chem, 104(2): 585-592.
  • Özcan, M.M., Chalchat, J.C. (2008). Chemical composition and antifungal activity of rosemary (Rosmarinus officinalis L.) oil from Turkey. Int J Food Sci Nutr, 59(7-8): 691-698.
  • Gachkar, L., Yedegari, D., Rezaei, M.B., Taghizadeh, M., Astaneh, S.A., Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chem, 102(3): 898-904.
  • Genena, A.K., Hense, H., Smania Junior, A., Souza, S.M.D. (2008). Rosemary (Rosmarinus officinalis): a study of the composition, antioxidant and antimicrobial activities of extracts obtained with supercritical carbon dioxide. Food Sci Technol (Campinas), 28(2): 463-469.
  • Ojeda-Sana, A.M., van Baren, C.M., Elechosa, M.A., Juarez, M.A., Moreno, S. (2013). New insights into antibacterial and antioxidant activities of rosemary essential oils and their main components. Food Control, 31(1): 189-195.
  • Erkmen, O., Özcan, M.M. (2008). Antimicrobial effects of Turkish propolis, pollen, and laurel on spoilage and pathogenic food-related microorganisms. J Med Food, 11(3): 587-592.
  • Ramos, C., Teixeira, B., Batista, I., Matos, O., Serrano, C., Neng, N.R., Nogueira, J.M.F., Nunes, M.L., Marques, A. (2012). Antioxidant and antibacterial activity of essential oil and extracts of bay laurel Laurus nobilis Linnaeus (Lauraceae) from Portugal. Nat Prod Res, 26(6): 518-529.
  • El, S.N., Karagozlu, N., Karakaya, S., Sahin, S. (2014). Antioxidant and antimicrobial activities of essential oils extracted from Laurus nobilis L. leaves by using solvent-free microwave and hydrodistillation. Food Nutr Sci, 5(2): 97-106.
  • Rather, M.A., Dar, B.A., Dar, M.Y., Wani, B.A., Shah, W.A., Bhat, B.A., Ganai, B.A., Bhat, K.A., Anand, R., Qurishi, M.A. (2012). Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine, 19(13): 1185-1190.
  • Gao, X., Björk, L., Trajkovski, V., Uggla, M. (2000). Evaluation of antioxidant actives of rosehip ethanol extracts in different test systems. J Agric Food Chem, 80(14): 2021-2027.
  • Nakajima, J., Tanaka, I., Seo, S., Yamazaki, M., Saito, K. (2004). LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries. J Biomed Biotechnol, 2004(5): 241-247.
  • Cosentino, S., Tuberoso, C.I.G., Pisano, B., Satta, M.L., Mascia, V., Arzedi, E., Palmas, F. (1999). In-vitro antimicrobial activity and chemical composition of Sardinian thymus essential oils. Lett Appl Microbiol, 29(2): 130-135.
  • Lambert, R.J.W., Skandamis, P.N., Coote, P.J., Nychas, G.J. (2001). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol, 91(3): 453-462.
  • Celikel, N., Kavas, G. (2008). Antimicrobial properties of some essential oils against some pathogenic microorganisms. Czech J Food Sci, 26(3): 174-181.
  • Abdullah, B.H., Hatem, S.F., Jumaa, W. (2015). A comparative study of the antibacterial activity of clove and rosemary essential oils on multidrug resistant bacteria. UK J Pharm Biosci, 3(1), 18-22.
  • Miladi, H., Slama, R.B., Mili, D., Zouari, S., Bakhrouf, A. (2013). Essential oil of Thymus vulgaris L. and Rosmarinus officinalis L.: Gas chromatography-mass spectrometry analysis, cytotoxicity and antioxidant properties and antibacterial activities against foodborne pathogens. Nat Sci, 5(6): 729-739.
  • Abdollahzadeh, E., Rezaei, M., Hosseini, H. (2014). Antibacterial activity of plant essential oils and extracts: The role of thyme essential oil, nisin, and their combination to control Listeria monocytogenes inoculated in minced fish meat. Food Control, 35(1): 177-183.
  • Saǧdιç, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT-Food Sci Technol, 36(5): 467-473.
  • Fu, Y., Zu, Y., Chen, L., Shi, X., Wang, Z., Sun, S., Efferth, T. (2007). Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytother Res, 21(10): 989-994.
  • Yilmaz, E.S., Timur, M., Aslim, B. (2013). Antimicrobial, antioxidant activity of the essential oil of Bay Laurel from Hatay, Turkey. J Essent Oil Bear Pl, 16(1): 108-116.
  • Ekren, S., Yerlikaya, O., Tokul, H.E., Akpınar, A., Accedil, M. (2013). Chemical composition, antimicrobial activity and antioxidant capacity of some medicinal and aromatic plant extracts. Afr J Microbiol Res, 7(5): 383-388.
  • Kon, K., Rai, M. (2012). Antibacterial activity of Thymus vulgaris essential oil alone and in combination with other essential oils. Nus Biosci, 4(2): 50-56.
  • Prusinowska, R., Smigielski, K. (2015). Losses of essential oils and antioxidants during the drying of herbs and spices. A review. Nauki Inżynierskie i Technologie, 2(17): 51-62.
  • Yanishlieva-Maslarova, N.V., Heinonen, I.M. (2001). Sources of natural antioxidants: vegetables, fruits, herbs, spices and teas. In: Antioxidants in foods, Pokorny, J., Yanislieva, N., Gordon, M. (eds), CRC Press, Cambridge, the UK, pp. 210-263.
  • Üstün, N.Ş., Turhan, S. (1999). Yağ oksidasyonu ve antioksidanlar. OMÜ Ziraat Fakültesi Yardımcı Ders Notu, No:11, Samsun, Türkiye, 81 s.
  • Basmacıoğlu Malayoğlu, H., Aktaş, B., Yeşil Çeliktaş, Ö. (2011). Bazı bitki türlerinden elde edilen uçucu yağların toplam fenol içerikleri ve antioksidan aktiviteleri. Ege Üniv Ziraat Fak Derg, 48(3): 211-215.
  • Fadda, A., Serra, M., Molinu, M.G., Azara, E., Barberis, A., Sanna, D. (2014). Reaction time and DPPH concentration influence antioxidant activity and kinetic parameters of bioactive molecules and plant extracts in the reaction with the DPPH radical. J Food Comp Anal, 35(2): 112-119.
There are 43 citations in total.

Details

Other ID GD17030
Journal Section Articles
Authors

Sadettin Turhan

Serpil Tural

Publication Date August 10, 2017
Published in Issue Year 2017 Volume: 42 Issue: 5

Cite

APA Turhan, S., & Tural, S. (2017). KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ. Gıda, 42(5), 588-596.
AMA Turhan S, Tural S. KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ. The Journal of Food. October 2017;42(5):588-596.
Chicago Turhan, Sadettin, and Serpil Tural. “KEKİK (Thymus Vulgaris L.), BİBERİYE (Rosmarinus Officinalis L.) VE DEFNE (Lauris Nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ”. Gıda 42, no. 5 (October 2017): 588-96.
EndNote Turhan S, Tural S (October 1, 2017) KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ. Gıda 42 5 588–596.
IEEE S. Turhan and S. Tural, “KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ”, The Journal of Food, vol. 42, no. 5, pp. 588–596, 2017.
ISNAD Turhan, Sadettin - Tural, Serpil. “KEKİK (Thymus Vulgaris L.), BİBERİYE (Rosmarinus Officinalis L.) VE DEFNE (Lauris Nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ”. Gıda 42/5 (October 2017), 588-596.
JAMA Turhan S, Tural S. KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ. The Journal of Food. 2017;42:588–596.
MLA Turhan, Sadettin and Serpil Tural. “KEKİK (Thymus Vulgaris L.), BİBERİYE (Rosmarinus Officinalis L.) VE DEFNE (Lauris Nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ”. Gıda, vol. 42, no. 5, 2017, pp. 588-96.
Vancouver Turhan S, Tural S. KEKİK (Thymus vulgaris L.), BİBERİYE (Rosmarinus officinalis L.) VE DEFNE (Lauris nobilis L.) UÇUCU YAĞLARININ VE KARIŞIMLARININ ANTİMİKROBİYAL VE ANTİOKSİDAN ÖZELLİKLERİ. The Journal of Food. 2017;42(5):588-96.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/