Review
BibTex RIS Cite

THE MICROENCAPSULATION OF BIOACTIVE FOOD COMPONENTS BY SPRAY CHILLING METHOD

Year 2018, Volume: 43 Issue: 1, 11 - 20, 15.01.2018

Abstract

Recently, interest in spray
chilling has been increasing due to the many advantages provided by
microencapsulation methods. In the spray chilling method, hydrophobic lipid
materials are used as carrier. 
The
bioactive food ingredient is added into the lipid matrix which is brought to
the melting temperature and homogenized. The microencapsulation process is
operated by solidifying the lipid droplets at a temperature lower than the
melting temperature in the spray chilling system.



Relatively low temperature
is applied during melting of the carrier material and the active material is
not exposed directly to high temperature in the spray chilling method. For this
reason, it is widely preferred in the microencapsulation of heat sensitive
bioactive food components. In addition, using of hydrophobic materials as
carrier in the spray chilling method allow the microcapsules to pass through
the gastric digestion and reach colon where they are most effective, thereby it
increases the bioavailability of the bioactive food components.

References

  • Alvim, I.D., De Souza, F.D., Koury, I.P., Jurt, T., Dantas, F.B.H. (2013). Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles. Food Sci Technol, 33: 34-39.
  • Alvim, I.D., Stein, M.A., Koury, I.P., Dantas, F.B.H., Cruz, C. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Science and Technology, 65: 689-694.
  • Arslan-Tontul, S. (2017). Probiyotik mikroorganizmaların püskürterek dondurma ve kurutma teknikleriyle mikroenkapsüle edilerek probiyotik kek üretiminde kullanım imkanlarının araştırılması, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Antalya. 159 s.
  • Arslan-Tontul, S., Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. Food Sci Technol, 81: 160-169.
  • Arslan, S., Erbas, M., Tontul, I., Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. Food Sci Technol, 63(1): 685-690.
  • Bampi, G.B., Backes, G.T., Cansian, R.L., De Matos, F.E., Ansolin, I.M.A., Poleto, B.C., Corezzolla, L.R., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp lactis and its use in the preparation of savory probiotic cereal bars. Food Biopro Technol, 9(8): 1422-1428.
  • Burgain, J., Gaiani, C., Linder, M., Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Eng, 104(4): 467-483.
  • Chambi, H.N.M., Alvim, I.D., Barrera-Arellano, D., Grosso, C.R.F. (2008). Solid lipid microparticles containing water-soluble compounds of different molecular mass: Production, characterisation and release profiles. Food Res Int, 41(3): 229-236.
  • Chavez, B.E., Ledeboer, A.M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technol, 25(7-8): 1193-1201.
  • Consoli, L., Grimaldi, R., Sartori, T., Menegalli, F.C., Hubinger, M.D. (2016). Gallic acid microparticles produced by spray chilling technique: Production and characterization. Food Sci Technol, 65: 79-87.
  • Cook, M.T., Tzortzis, G., Charalampopoulos, D., Khutoryanskiy, V.V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J Control Release, 162(1): 56-67.
  • De Matos, F.E., Comunian, T.A., Thomazini, M., Favaro-Trindade, C.S. (2017). Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. Food Sci Technol, 75: 251-260.
  • De Matos, F.E., Jr., Thomazini, M., Trindade, M.A., Fávaro-Trindade, C.S. (2015). Application of free or encapsulated Vitamin C to chicken frankfurter sausage by spray chilling: Physicochemical characteristics, stability and sensory acceptance. Brazil J Food Technol, 18(4): 322-331.
  • De Prisco, A., Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trend Food Sci Technol, 48: 27-39.
  • Desai, K.G.H., Park, H.J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technol, 23(7): 1361-1394.
  • Di Sabatino, M., Albertini, B., Kett, V.L., Passerini, N. (2012). Spray congealed lipid microparticles with high protein loading: Preparation and solid state characterisation. Eur J Pharm Sci, 46(5): 346-356.
  • Dianawati, D., Mishra, V., Shah, N.P. (2013). Survival of Bifidobacterium longum 1941 microencapsulated with proteins and sugars after freezing and freeze drying. Food Res Int, 51(2): 503-509.
  • Dianawati, D., Mishra, V., Shah, N.P. (2016). Survival of microencapsulated probiotic bacteria after processing and during storage: A review. Critl Rev Food Sci Nutr, 56(10): 1685-1716.
  • Gamboa, O.D., Goncalves, L.G., Grosso, C. F. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. 11th International Congress on Engineering and Food, 1732-1739 ss, 1732-1739 s.
  • Garti, N., Mcclements, D.J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Academic Press, Boca Raton. 612 s.
  • Gavory, C., Abderrahmen, R., Bordes, C., Chaussy, D., Belgacem, M.N., Fessi, H., Briancon, S. (2014). Encapsulation of a pressure sensitive adhesive by spray-cooling: Optimum formulation and processing conditions. Adv Powder Technol, 25(1): 292-300.
  • Ghandi, A., Powell, I.B., Chen, X.D., Adhikari, B. (2012). The effect of dryer inlet and outlet air temperatures and protectant solids on the survival of Lactococcus lactis during spray drying. Drying Technol, 30(14): 1649-1657.
  • Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N. (1999). Encapsulation in the food industry: a review. Int J Food Sci Nutr, 50(3): 213-224.
  • Gomes, G.V.D., Borrin, T.R., Cardoso, L.P., Souto, E., De Pinho, S.C. (2013). Characterization and shelf life of beta-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Brazil Archives Biol Technol, 56(4): 663-671.
  • Gouin, S. (2004). Microencapsulation. Trend Food Sci Technol, 15(7): 330-347.
  • Huq, T., Khan, A., Khan, R.A., Riedl, B., Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critic Rev Food Sci Nutr, 53(9): 909-916.
  • Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. Food Sci Technol, 62(1): 847-853.
  • Kwak, H.S., Ihm, M.R., Ahn, J. (2001). Microencapsulation of beta-galactosidase with fatty acid esters. J Dairy Sci, 84(7): 1576-1582.
  • Lahtinen, S.J., Ouwehand, A.C., Salminen, S.J., Forssell, P., Myllarinen, P. (2007). Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett Appl Microbiol, 44(5): 500-505.
  • Lakkis, J.M. (2016). Encapsulation and controlled release in bakery applications. In: Encapsulation and Controlled Release Technologies in Food Systems: Second Edition Lakkis, J.M. (Ed.). Wiley-Blackwell, Boca Raton, pp. 204-235.
  • Leonel, A.J., Chambi, H.N.M., Barrera-Arellano, D., Pastore, H.O., Grosso, C.R.F. (2010). Production and characterization of lipid microparticles produced by spray cooling encapsulating a low molar mass hydrophilic compound. Cien Tecnol Alimentos, 30(1): 276-281.
  • Lopes, J.D., Grosso, C.R.F., Calligaris, G.D., Cardoso, L.P., Basso, R.C., Ribeiro, A.P.B., Efraim, P. (2015). Solid lipid microparticles of hardfats produced by spray cooling as promising crystallization modifiers in lipid systems. Eur J Lipid Sci Technol, 117(11): 1733-1744.
  • Madene, A., Jacquot, M., Scher, J., Desobry, S. (2006). Flavour encapsulation and controlled release - A review. Int J Food Sci Technol, 41(1): 1-21.
  • Maschke, A., Becker, C., Eyrich, D., Kiermaier, J., Blunk, T., Gopferich, A. (2007). Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm, 65(2): 175-187.
  • Matos, F.E., Di Sabatino, M., Passerini, N., Favaro-Trindade, C.S., Albertini, B. (2015). Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Res Int, 67: 52-59.
  • Mba, O.I., Dumont, M.J., Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Biosci, 10: 26-41.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Proc Food Sci, 1: 1806-1815.
  • Okuro, P.K., De Matos Junior, F.E., Favaro-Trindade, C.S. (2013a). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol, 51(2): 171–182.
  • Okuro, P.K., Thomazini, M., Balieiro, J.C.C., Liberal, R., Favaro-Trindade, C.S. (2013b). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int, 53(1): 96-103.
  • Oriani, V.B., Alvim, I.D., Consoli, L., Molina, G., Pastore, G.M., Hubinger, M.D. (2016). Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Res Int, 80: 41-49.
  • Oxley, J.D. (2012). Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In: Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals Garti, N., Bhandari, B. (Eds.). Academic Press, Boca Raton, pp. 110-130.
  • Park, K.M., Sung, H., Choi, S.J., Choi, Y.J., Chang, P.S. (2014). Double-layered microparticles with enzyme-triggered release for the targeted delivery of water-soluble bioactive compounds to small intestine. Food Chem, 161: 53-59.
  • Pedroso, D.D., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J, 26(2): 127-132.
  • Pedroso, D.L., Dogenski, M., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2013). Microencapsulation of Bifidobacterium animalis subsp lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Brazil J Microbiol, 44(3): 777-783.
  • Pelissari, J.R., Souza, V.B., Pigoso, A.A., Tulini, F.L., Thomazini, M., Rodrigues, C.E.C., Urbano, A., Fauaro-Trindade, C.S. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food Bioproduct Proces, 98: 86-94. Reineccius, G.A. (2004). The spray drying of food flavors. Drying Technol, 22(6): 1289-1324.
  • Ribeiro, M., Arellano, D.B., Grosso, C.R.F. (2012). The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Res Int, 47(1): 38-44.
  • Risch, S.J. (1995). Encapsulation: Overview of uses and techniques. In: Encapsulation and Controlled Release of Food Ingredients Risch, S.J., Reineccius, G.A. (Eds.). American Chemical Society, Washington, pp. 2-7.
  • Rokka, S., Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol, 231(1): 1-12.
  • Salvim, M.O., Thomazini, M., Pelaquim, F.P., Urbano, A., Moraes, I.C.F., Favaro-Trindade, C.S. (2015). Production and structural characterization of solid lipid microparticles loaded with soybean protein hydrolysate. Food Res Int, 76: 689-696.
  • Sartori, T., Consoli, L., Hubinger, M.D., Menegalli, F.C. (2015). Ascorbic acid microencapsulation by spray chilling: Production and characterization. Food Sci Technol, 63(1): 353-360.
  • Schubert, M.A., Harms, M., Muller-Goymann, C.C. (2006). Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci, 27(2-3): 226-236.
  • Sillick, M., Gregson, C.M. (2012). Spray chill encapsulation of flavors within anhydrous erythritol crystals. Food Sci Technol, 48(1): 107-113.
  • Tulini, F.L., Souza, V.B., Echalar-Barrientos, M.A., Thomazini, M., Pallone, E., Favaro-Trindade, C.S. (2016). Development of solid lipid microparticles loaded with a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum): Potential for increasing antioxidant content in functional foods for diabetic population. Food Res Int, 85: 10-18.
  • Tulini, F.L., Souza, V.B., Thomazini, M., Silva, M.P., Massarioli, A.P., Alencar, S.M., Pallone, E., Genovese, M.I., Favaro-Trindade, C.S. (2017). Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with alpha-tocopherol by spray chilling. Food Res Int, 95: 117-124.

BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU

Year 2018, Volume: 43 Issue: 1, 11 - 20, 15.01.2018

Abstract

Mikroenkapsülasyon yöntemleri içerisinde püskürterek
dondurma yöntemine olan ilgi, sağladığı birçok avantaj nedeniyle son zamanlarda
giderek artmaktadır. Püskürterek dondurma yönteminde, taşıyıcı olarak
hidrofobik karakterli lipit materyaller kullanılmaktadır. Erime sıcaklığına
getirilerek sıvı forma geçirilen lipit matriks içerisine biyoaktif gıda
bileşeni eklenerek homojenize edilmekte ve püskürterek dondurma sisteminde
erime sıcaklığının daha altındaki bir sıcaklıkta lipit damlacıklarının
katılaşması sağlanarak mikroenkapsülasyon işlemi gerçekleştirilmektedir.
Püskürterek dondurma yönteminde, taşıyıcı materyalin eritilmesi sırasında
minimal bir sıcaklık uygulanmakta olup aktif materyal doğrudan yüksek sıcaklığa
maruz kalmamaktadır. Bu nedenle son zamanlarda sıcaklık hassasiyeti yüksek
biyoaktif gıda bileşenlerinin mikroenkapsülasyonunda püskürterek dondurma
tekniği yaygın olarak tercih edilmektedir. Ayrıca püskürterek dondurma
yönteminde taşıyıcı olarak kullanılan hidrofobik materyaller, mikrokapsüllerin
mide sindiriminden etkilenmeden geçerek asıl etkili oldukları bölge olan
kolonda salınımına imkan vermekte ve bu yolla biyoaktif gıda bileşenlerinin
biyoyarayışlılığını da oldukça arttırmaktadır. 

References

  • Alvim, I.D., De Souza, F.D., Koury, I.P., Jurt, T., Dantas, F.B.H. (2013). Use of the spray chilling method to deliver hydrophobic components: physical characterization of microparticles. Food Sci Technol, 33: 34-39.
  • Alvim, I.D., Stein, M.A., Koury, I.P., Dantas, F.B.H., Cruz, C. (2016). Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in a baked product application. LWT-Food Science and Technology, 65: 689-694.
  • Arslan-Tontul, S. (2017). Probiyotik mikroorganizmaların püskürterek dondurma ve kurutma teknikleriyle mikroenkapsüle edilerek probiyotik kek üretiminde kullanım imkanlarının araştırılması, Akdeniz Üniversitesi Fen Bilimleri Enstitüsü Gıda Mühendisliği Anabilim Dalı, Antalya. 159 s.
  • Arslan-Tontul, S., Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. Food Sci Technol, 81: 160-169.
  • Arslan, S., Erbas, M., Tontul, I., Topuz, A. (2015). Microencapsulation of probiotic Saccharomyces cerevisiae var. boulardii with different wall materials by spray drying. Food Sci Technol, 63(1): 685-690.
  • Bampi, G.B., Backes, G.T., Cansian, R.L., De Matos, F.E., Ansolin, I.M.A., Poleto, B.C., Corezzolla, L.R., Favaro-Trindade, C.S. (2016). Spray chilling microencapsulation of Lactobacillus acidophilus and Bifidobacterium animalis subsp lactis and its use in the preparation of savory probiotic cereal bars. Food Biopro Technol, 9(8): 1422-1428.
  • Burgain, J., Gaiani, C., Linder, M., Scher, J. (2011). Encapsulation of probiotic living cells: From laboratory scale to industrial applications. J Food Eng, 104(4): 467-483.
  • Chambi, H.N.M., Alvim, I.D., Barrera-Arellano, D., Grosso, C.R.F. (2008). Solid lipid microparticles containing water-soluble compounds of different molecular mass: Production, characterisation and release profiles. Food Res Int, 41(3): 229-236.
  • Chavez, B.E., Ledeboer, A.M. (2007). Drying of probiotics: Optimization of formulation and process to enhance storage survival. Drying Technol, 25(7-8): 1193-1201.
  • Consoli, L., Grimaldi, R., Sartori, T., Menegalli, F.C., Hubinger, M.D. (2016). Gallic acid microparticles produced by spray chilling technique: Production and characterization. Food Sci Technol, 65: 79-87.
  • Cook, M.T., Tzortzis, G., Charalampopoulos, D., Khutoryanskiy, V.V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. J Control Release, 162(1): 56-67.
  • De Matos, F.E., Comunian, T.A., Thomazini, M., Favaro-Trindade, C.S. (2017). Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. Food Sci Technol, 75: 251-260.
  • De Matos, F.E., Jr., Thomazini, M., Trindade, M.A., Fávaro-Trindade, C.S. (2015). Application of free or encapsulated Vitamin C to chicken frankfurter sausage by spray chilling: Physicochemical characteristics, stability and sensory acceptance. Brazil J Food Technol, 18(4): 322-331.
  • De Prisco, A., Mauriello, G. (2016). Probiotication of foods: A focus on microencapsulation tool. Trend Food Sci Technol, 48: 27-39.
  • Desai, K.G.H., Park, H.J. (2005). Recent developments in microencapsulation of food ingredients. Drying Technol, 23(7): 1361-1394.
  • Di Sabatino, M., Albertini, B., Kett, V.L., Passerini, N. (2012). Spray congealed lipid microparticles with high protein loading: Preparation and solid state characterisation. Eur J Pharm Sci, 46(5): 346-356.
  • Dianawati, D., Mishra, V., Shah, N.P. (2013). Survival of Bifidobacterium longum 1941 microencapsulated with proteins and sugars after freezing and freeze drying. Food Res Int, 51(2): 503-509.
  • Dianawati, D., Mishra, V., Shah, N.P. (2016). Survival of microencapsulated probiotic bacteria after processing and during storage: A review. Critl Rev Food Sci Nutr, 56(10): 1685-1716.
  • Gamboa, O.D., Goncalves, L.G., Grosso, C. F. (2011). Microencapsulation of tocopherols in lipid matrix by spray chilling method. 11th International Congress on Engineering and Food, 1732-1739 ss, 1732-1739 s.
  • Garti, N., Mcclements, D.J. (2012). Encapsulation technologies and delivery systems for food ingredients and nutraceuticals. Academic Press, Boca Raton. 612 s.
  • Gavory, C., Abderrahmen, R., Bordes, C., Chaussy, D., Belgacem, M.N., Fessi, H., Briancon, S. (2014). Encapsulation of a pressure sensitive adhesive by spray-cooling: Optimum formulation and processing conditions. Adv Powder Technol, 25(1): 292-300.
  • Ghandi, A., Powell, I.B., Chen, X.D., Adhikari, B. (2012). The effect of dryer inlet and outlet air temperatures and protectant solids on the survival of Lactococcus lactis during spray drying. Drying Technol, 30(14): 1649-1657.
  • Gibbs, B.F., Kermasha, S., Alli, I., Mulligan, C.N. (1999). Encapsulation in the food industry: a review. Int J Food Sci Nutr, 50(3): 213-224.
  • Gomes, G.V.D., Borrin, T.R., Cardoso, L.P., Souto, E., De Pinho, S.C. (2013). Characterization and shelf life of beta-carotene loaded solid lipid microparticles produced with stearic acid and sunflower oil. Brazil Archives Biol Technol, 56(4): 663-671.
  • Gouin, S. (2004). Microencapsulation. Trend Food Sci Technol, 15(7): 330-347.
  • Huq, T., Khan, A., Khan, R.A., Riedl, B., Lacroix, M. (2013). Encapsulation of probiotic bacteria in biopolymeric system. Critic Rev Food Sci Nutr, 53(9): 909-916.
  • Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., Pankasemsuk, T. (2015). Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. Food Sci Technol, 62(1): 847-853.
  • Kwak, H.S., Ihm, M.R., Ahn, J. (2001). Microencapsulation of beta-galactosidase with fatty acid esters. J Dairy Sci, 84(7): 1576-1582.
  • Lahtinen, S.J., Ouwehand, A.C., Salminen, S.J., Forssell, P., Myllarinen, P. (2007). Effect of starch- and lipid-based encapsulation on the culturability of two Bifidobacterium longum strains. Lett Appl Microbiol, 44(5): 500-505.
  • Lakkis, J.M. (2016). Encapsulation and controlled release in bakery applications. In: Encapsulation and Controlled Release Technologies in Food Systems: Second Edition Lakkis, J.M. (Ed.). Wiley-Blackwell, Boca Raton, pp. 204-235.
  • Leonel, A.J., Chambi, H.N.M., Barrera-Arellano, D., Pastore, H.O., Grosso, C.R.F. (2010). Production and characterization of lipid microparticles produced by spray cooling encapsulating a low molar mass hydrophilic compound. Cien Tecnol Alimentos, 30(1): 276-281.
  • Lopes, J.D., Grosso, C.R.F., Calligaris, G.D., Cardoso, L.P., Basso, R.C., Ribeiro, A.P.B., Efraim, P. (2015). Solid lipid microparticles of hardfats produced by spray cooling as promising crystallization modifiers in lipid systems. Eur J Lipid Sci Technol, 117(11): 1733-1744.
  • Madene, A., Jacquot, M., Scher, J., Desobry, S. (2006). Flavour encapsulation and controlled release - A review. Int J Food Sci Technol, 41(1): 1-21.
  • Maschke, A., Becker, C., Eyrich, D., Kiermaier, J., Blunk, T., Gopferich, A. (2007). Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm, 65(2): 175-187.
  • Matos, F.E., Di Sabatino, M., Passerini, N., Favaro-Trindade, C.S., Albertini, B. (2015). Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Res Int, 67: 52-59.
  • Mba, O.I., Dumont, M.J., Ngadi, M. (2015). Palm oil: Processing, characterization and utilization in the food industry - A review. Food Biosci, 10: 26-41.
  • Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Proc Food Sci, 1: 1806-1815.
  • Okuro, P.K., De Matos Junior, F.E., Favaro-Trindade, C.S. (2013a). Technological challenges for spray chilling encapsulation of functional food ingredients. Food Technol. Biotechnol, 51(2): 171–182.
  • Okuro, P.K., Thomazini, M., Balieiro, J.C.C., Liberal, R., Favaro-Trindade, C.S. (2013b). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Res Int, 53(1): 96-103.
  • Oriani, V.B., Alvim, I.D., Consoli, L., Molina, G., Pastore, G.M., Hubinger, M.D. (2016). Solid lipid microparticles produced by spray chilling technique to deliver ginger oleoresin: Structure and compound retention. Food Res Int, 80: 41-49.
  • Oxley, J.D. (2012). Spray cooling and spray chilling for food ingredient and nutraceutical encapsulation. In: Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals Garti, N., Bhandari, B. (Eds.). Academic Press, Boca Raton, pp. 110-130.
  • Park, K.M., Sung, H., Choi, S.J., Choi, Y.J., Chang, P.S. (2014). Double-layered microparticles with enzyme-triggered release for the targeted delivery of water-soluble bioactive compounds to small intestine. Food Chem, 161: 53-59.
  • Pedroso, D.D., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2012). Protection of Bifidobacterium lactis and Lactobacillus acidophilus by microencapsulation using spray-chilling. Int Dairy J, 26(2): 127-132.
  • Pedroso, D.L., Dogenski, M., Thomazini, M., Heinemann, R.J.B., Favaro-Trindade, C.S. (2013). Microencapsulation of Bifidobacterium animalis subsp lactis and Lactobacillus acidophilus in cocoa butter using spray chilling technology. Brazil J Microbiol, 44(3): 777-783.
  • Pelissari, J.R., Souza, V.B., Pigoso, A.A., Tulini, F.L., Thomazini, M., Rodrigues, C.E.C., Urbano, A., Fauaro-Trindade, C.S. (2016). Production of solid lipid microparticles loaded with lycopene by spray chilling: Structural characteristics of particles and lycopene stability. Food Bioproduct Proces, 98: 86-94. Reineccius, G.A. (2004). The spray drying of food flavors. Drying Technol, 22(6): 1289-1324.
  • Ribeiro, M., Arellano, D.B., Grosso, C.R.F. (2012). The effect of adding oleic acid in the production of stearic acid lipid microparticles with a hydrophilic core by a spray-cooling process. Food Res Int, 47(1): 38-44.
  • Risch, S.J. (1995). Encapsulation: Overview of uses and techniques. In: Encapsulation and Controlled Release of Food Ingredients Risch, S.J., Reineccius, G.A. (Eds.). American Chemical Society, Washington, pp. 2-7.
  • Rokka, S., Rantamäki, P. (2010). Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. Eur Food Res Technol, 231(1): 1-12.
  • Salvim, M.O., Thomazini, M., Pelaquim, F.P., Urbano, A., Moraes, I.C.F., Favaro-Trindade, C.S. (2015). Production and structural characterization of solid lipid microparticles loaded with soybean protein hydrolysate. Food Res Int, 76: 689-696.
  • Sartori, T., Consoli, L., Hubinger, M.D., Menegalli, F.C. (2015). Ascorbic acid microencapsulation by spray chilling: Production and characterization. Food Sci Technol, 63(1): 353-360.
  • Schubert, M.A., Harms, M., Muller-Goymann, C.C. (2006). Structural investigations on lipid nanoparticles containing high amounts of lecithin. Eur J Pharm Sci, 27(2-3): 226-236.
  • Sillick, M., Gregson, C.M. (2012). Spray chill encapsulation of flavors within anhydrous erythritol crystals. Food Sci Technol, 48(1): 107-113.
  • Tulini, F.L., Souza, V.B., Echalar-Barrientos, M.A., Thomazini, M., Pallone, E., Favaro-Trindade, C.S. (2016). Development of solid lipid microparticles loaded with a proanthocyanidin-rich cinnamon extract (Cinnamomum zeylanicum): Potential for increasing antioxidant content in functional foods for diabetic population. Food Res Int, 85: 10-18.
  • Tulini, F.L., Souza, V.B., Thomazini, M., Silva, M.P., Massarioli, A.P., Alencar, S.M., Pallone, E., Genovese, M.I., Favaro-Trindade, C.S. (2017). Evaluation of the release profile, stability and antioxidant activity of a proanthocyanidin-rich cinnamon (Cinnamomum zeylanicum) extract co-encapsulated with alpha-tocopherol by spray chilling. Food Res Int, 95: 117-124.
There are 54 citations in total.

Details

Other ID GD17075
Journal Section Articles
Authors

Sultan Arslan Tontul

Mustafa Erbaş

Publication Date January 15, 2018
Published in Issue Year 2018 Volume: 43 Issue: 1

Cite

APA Arslan Tontul, S., & Erbaş, M. (2018). BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU. Gıda, 43(1), 11-20.
AMA Arslan Tontul S, Erbaş M. BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU. The Journal of Food. January 2018;43(1):11-20.
Chicago Arslan Tontul, Sultan, and Mustafa Erbaş. “BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU”. Gıda 43, no. 1 (January 2018): 11-20.
EndNote Arslan Tontul S, Erbaş M (January 1, 2018) BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU. Gıda 43 1 11–20.
IEEE S. Arslan Tontul and M. Erbaş, “BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU”, The Journal of Food, vol. 43, no. 1, pp. 11–20, 2018.
ISNAD Arslan Tontul, Sultan - Erbaş, Mustafa. “BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU”. Gıda 43/1 (January 2018), 11-20.
JAMA Arslan Tontul S, Erbaş M. BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU. The Journal of Food. 2018;43:11–20.
MLA Arslan Tontul, Sultan and Mustafa Erbaş. “BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU”. Gıda, vol. 43, no. 1, 2018, pp. 11-20.
Vancouver Arslan Tontul S, Erbaş M. BİYOAKTİF GIDA BİLEŞENLERİNİN PÜSKÜRTEREK DONDURMA YÖNTEMİ İle MİKROENKAPSÜLASYONU. The Journal of Food. 2018;43(1):11-20.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/