Research Article
BibTex RIS Cite

FARKLI HİDROLİK ALIKONMA SÜRELERİNDE KEÇİBOYNUZU EKSTRAKTI BESİYERİNDE SÜREKLİ ETANOL FERMANTASYONU

Year 2019, Volume: 44 Issue: 1, 93 - 103, 15.02.2019
https://doi.org/10.15237/gida.GD18085

Abstract

Enerji endüstrisinin tüm dünyada ucuz yenilenebilir
kaynaklar sağlaması için önemli biyoproseslerden birisi biyoetanol üretimidir.
Bu çalışmada serbest veya immobilize edilmiş
S. cerevisiae hücreleri ile
ucuz bir karbon kaynağı olan keçiboynuzu ekstraktından sürekli etanol
fermantasyonları amaçlanmıştır. Sürekli etanol fermantasyonları farklı hidrolik
alıkonma sürelerinde (4-20 saat) gerçekleştirilmiştir. Optimum hidrolik
alıkonma süreleri, serbest haldeki hücreler için 8 sa ve immobilize edilmiş
hücreler için 6.67 sa olarak belirlenmiştir. Serbest ve immobilize hücre
fermantasyonları için en yüksek etanol üretim oranları sırasıyla 3.12 g/L/sa ve
3.37 g/L/sa olarak hidrolik alıkonma süresi 5.71 saatte elde edilmiştir. Tüm
kinetik parametreler, her iki hücre tipinin etanol fermantasyonu için
kullanılabileceğini ve immobilize edilmiş
S. cerevisiae hücreleri ile
gerçekleştirilen etanol fermantasyonunun, süspansiyon haldeki hücrelere kıyasla
biyokütleden bağımsız olarak daha yüksek seyreltme oranlarında
gerçekleştirilebileceğini açıkça göstermiştir.

References

  • AFDC (2017). Alternative Fuels Data Center, U.S. Department of Energy. http://www.afdc.energy.gov (Accessed: 20 October 2017)
  • Alani, F., Moo-Young, M., Anderson, W., Bataine, Z. (2007). Optimization of citric acid production from a new strain and mutant of Aspergillus niger using solid state fermentation. Food Biotechnol 21(1-2): 169-180, doi: 10.1080/08905430701410597
  • Ayaz, F.A., Torun, H., Ayaz, S., Correia, P.J., Alaiz, M., Sanz, C., Grúz, J., Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. J Food Quality 30(6): 1040-1055, doi: 10.1111/j.1745-4557.2007.00176.x
  • Bahry, H., Pons, A., Abdallah, R., Pierre, G., Delattre, C., Fayad, N., Taha, S., Vial, C. (2017). Valorization of carob waste: Definition of a second-generation bioethanol production process. Bioresource Technol 235: 25-34, doi: 10.1016/j.biortech.2017.03.056
  • Brethauer, S., Wyman, C.E. (2010). Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technol 101(13): 4862-4874, doi: 10.1016/j.biortech.2009.11.009
  • Cardona, C.A., Sánchez, Ó.J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technol 98(12): 2415-2457, doi: 10.1016/j.biortech.2007.01.002
  • Carvalho, M., Roca, C., Reis M.A.M. (2014). Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z. Bioresource Technol 170: 491-498, doi: 10.1016/j.biortech.2014.07.117
  • Germec, M., Turhan, I., Karhan, M., Demirci, A. (2015). Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 161: 304-311, doi: 10.1016/j.fuel.2015.08.060
  • Germec, M., Turhan, I., Demirci, A., Karhan, M. (2016). Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Source Part A 38(21): 3268-3272, doi: 10.1080/15567036.2015.1138004
  • Lee, K.H., Choi, I.S., Kim, Y.G., Yang, D.J., Bae, H.J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technol 102(17): 8191-8198, doi: 10.1016/j.biortech.2011.06.063
  • Lima-Costa, M.E., Tavares, C., Raposo, S., Rodrigues, B., Peinado, J.M. (2012). Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. J Ind Microbiol Biot 39(5): 789-797, doi: 10.1007/s10295-011-1079-4
  • Mazaheri, D., Shojaosadati, S.A., Mousavi, S.M., Hejazi, P., Saharkhiz, S. (2012). Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energ 99: 372-378, doi: 10.1016/j.apenergy.2012.05.045
  • Raposo, S., Constantino, A., Rodrigues, B., Lima-Costa, M.E. (2017). Nitrogen Sources Screening for Ethanol Production Using Carob Industrial Wastes. Appl Biochem Biotech 181(2): 827-843, doi: 10.1007/s12010-016-2252-z
  • Razmovski, R., Vučurović, V. (2011). Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate–maize stem ground tissue matrix. Enzyme Microb Tech 48(4): 378-385, doi: 10.1016/j.enzmictec.2010.12.015
  • Roukas, T. (1993). Ethanol-production from carob pods by Saccharomyces cerevisiae. Food Biotechnol 7(2): 159-176, doi: 10.1080/08905439309549854
  • Roukas, T. (1994). Continuous ethanol-production from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor. J Chem Technol Biot 59(4): 387-393, doi: 10.1002/jctb.280590412
  • Roukas, T. (1996). Continuous ethanol production from nonsterilized carob pod extract by immobilized Saccharomyces cerevisiae on mineral kissiris using a two-reactor system. Appl Biochem Biotech 59(3): 299-307, doi: 10.1007/BF02783571
  • Roukas, T. (1998). Carob pod: A new substrate for citric acid production by Aspergillus niger. Appl Biochem Biotech 74(1): 43-53, doi: 10.1007/BF02786885
  • Saharkhiz, S., Mazaheri, D., Shojaosadati, S.A. (2013). Evaluation of bioethanol production from carob pods by Zymomonas mobilis and Saccharomyces cerevisiae in solid submerged fermentation. Prep Biochem Biotech 43(5): 415-430, doi: 10.1080/10826068.2012.741642
  • Sánchez, S., Lozano, L.J., Godínez, C., Juan, D., Pérez, A., Hernández, F.J. (2010). Carob pod as a feedstock for the production of bioethanol in Mediterranean areas. Appl Energ 87(11): 3417-3424, doi: 10.1016/j.apenergy.2010.06.004
  • Sánchez-Segado, S., Lozano, L.J., de los Ríos, A.P., Hernández-Fernández, F.J., Godínez, C., Juan, D. (2012). Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock. Bioresource Technol 104: 324-328, doi: 10.1016/j.biortech.2011.10.046
  • Turhan, I., Bialka, K.L., Demirci, A., Karhan, M. (2010a). Enhanced lactic acid production from carob extract by Lactobacillus casei using invertase pretreatment. Food Biotechnol 24(4): 364-374, doi: 10.1080/08905436.2010.524485
  • Turhan, I., Bialka, K.L., Demirci, A., Karhan, M. (2010b). Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresource Technol 101(14): 5290-5296, doi: 10.1016/j.biortech.2010.01.146
  • Vaheed, H., Shojaosadati, S.A., Galip, H. (2011). Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology. J Ind Microbiol Biot 38(1): 101-111, doi: 10.1007/s10295-010-0835-1
  • Yatmaz, E., Turhan, I., Karhan, M. (2013). Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresource Technol 135: 365-371, doi: 10.1016/j.biortech.2012.09.006
  • Yatmaz, E., Karahalil, E., Germec, M, Ilgin, M., Turhan, I. (2016a). Controlling filamentous fungi morphology with microparticles to enhanced beta-mannanase production. Bioproc Biosyst Eng 39(9): 1391-1399, doi: 10.1007/s00449-016-1615-8
  • Yatmaz, E., Karahalil, E., Germec, M., Oziyci, H.R., Karhan, M., Duruksu, G., Ogel, Z.B., Turhan, I. (2016b). Enhanced β-mannanase production from alternative sources by recombinant Aspergillus sojae. Acta Alimentaria 45(3): 371-379, doi: 10.1556/066.2016.45.3.8
  • Yousif, A.K., Alghzawi, H.M. (2000). Processing and characterization of carob powder. Food Chem 69(3): 283-287, doi: 10.1016/S0308-8146(99)00265-4

CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT)

Year 2019, Volume: 44 Issue: 1, 93 - 103, 15.02.2019
https://doi.org/10.15237/gida.GD18085

Abstract










Production of bioethanol is one
of the important bioprocesses for the energy industry to provide inexpensive
renewable resources all over the world. In this context, this research was
organized for continuous ethanol fermentation from carob pod extract which is
an inexpensive carbon source by free or immobilized
S. cerevisiae cells.
Continuous ethanol fermentations were performed with different HRT (from 4 to
20 h) and optimal HRT were 8 h for the free cell, and 6.67 h for immobilized
cell, respectively.
The highest volumetric ethanol
productivities for free cell and immobilized cell fermentations were 3.12 g/L/h
and 3.37 g/L/h at HRT of 5.71 h, respectively.
All kinetic parameters
clearly showed that both cell types can be used for ethanol fermentation, and
immobilized
S. cerevisiae ethanol fermentation can be operated at higher
dilution rates independent of biomass than a free cell.

References

  • AFDC (2017). Alternative Fuels Data Center, U.S. Department of Energy. http://www.afdc.energy.gov (Accessed: 20 October 2017)
  • Alani, F., Moo-Young, M., Anderson, W., Bataine, Z. (2007). Optimization of citric acid production from a new strain and mutant of Aspergillus niger using solid state fermentation. Food Biotechnol 21(1-2): 169-180, doi: 10.1080/08905430701410597
  • Ayaz, F.A., Torun, H., Ayaz, S., Correia, P.J., Alaiz, M., Sanz, C., Grúz, J., Strnad, M. (2007). Determination of chemical composition of anatolian carob pod (Ceratonia siliqua L.): Sugars, amino and organic acids, minerals and phenolic compounds. J Food Quality 30(6): 1040-1055, doi: 10.1111/j.1745-4557.2007.00176.x
  • Bahry, H., Pons, A., Abdallah, R., Pierre, G., Delattre, C., Fayad, N., Taha, S., Vial, C. (2017). Valorization of carob waste: Definition of a second-generation bioethanol production process. Bioresource Technol 235: 25-34, doi: 10.1016/j.biortech.2017.03.056
  • Brethauer, S., Wyman, C.E. (2010). Review: Continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresource Technol 101(13): 4862-4874, doi: 10.1016/j.biortech.2009.11.009
  • Cardona, C.A., Sánchez, Ó.J. (2007). Fuel ethanol production: Process design trends and integration opportunities. Bioresource Technol 98(12): 2415-2457, doi: 10.1016/j.biortech.2007.01.002
  • Carvalho, M., Roca, C., Reis M.A.M. (2014). Carob pod water extracts as feedstock for succinic acid production by Actinobacillus succinogenes 130Z. Bioresource Technol 170: 491-498, doi: 10.1016/j.biortech.2014.07.117
  • Germec, M., Turhan, I., Karhan, M., Demirci, A. (2015). Ethanol production via repeated-batch fermentation from carob pod extract by using Saccharomyces cerevisiae in biofilm reactor. Fuel 161: 304-311, doi: 10.1016/j.fuel.2015.08.060
  • Germec, M., Turhan, I., Demirci, A., Karhan, M. (2016). Effect of media sterilization and enrichment on ethanol production from carob extract in a biofilm reactor. Energy Source Part A 38(21): 3268-3272, doi: 10.1080/15567036.2015.1138004
  • Lee, K.H., Choi, I.S., Kim, Y.G., Yang, D.J., Bae, H.J. (2011). Enhanced production of bioethanol and ultrastructural characteristics of reused Saccharomyces cerevisiae immobilized calcium alginate beads. Bioresource Technol 102(17): 8191-8198, doi: 10.1016/j.biortech.2011.06.063
  • Lima-Costa, M.E., Tavares, C., Raposo, S., Rodrigues, B., Peinado, J.M. (2012). Kinetics of sugars consumption and ethanol inhibition in carob pulp fermentation by Saccharomyces cerevisiae in batch and fed-batch cultures. J Ind Microbiol Biot 39(5): 789-797, doi: 10.1007/s10295-011-1079-4
  • Mazaheri, D., Shojaosadati, S.A., Mousavi, S.M., Hejazi, P., Saharkhiz, S. (2012). Bioethanol production from carob pods by solid-state fermentation with Zymomonas mobilis. Appl Energ 99: 372-378, doi: 10.1016/j.apenergy.2012.05.045
  • Raposo, S., Constantino, A., Rodrigues, B., Lima-Costa, M.E. (2017). Nitrogen Sources Screening for Ethanol Production Using Carob Industrial Wastes. Appl Biochem Biotech 181(2): 827-843, doi: 10.1007/s12010-016-2252-z
  • Razmovski, R., Vučurović, V. (2011). Ethanol production from sugar beet molasses by S. cerevisiae entrapped in an alginate–maize stem ground tissue matrix. Enzyme Microb Tech 48(4): 378-385, doi: 10.1016/j.enzmictec.2010.12.015
  • Roukas, T. (1993). Ethanol-production from carob pods by Saccharomyces cerevisiae. Food Biotechnol 7(2): 159-176, doi: 10.1080/08905439309549854
  • Roukas, T. (1994). Continuous ethanol-production from carob pod extract by immobilized Saccharomyces cerevisiae in a packed-bed reactor. J Chem Technol Biot 59(4): 387-393, doi: 10.1002/jctb.280590412
  • Roukas, T. (1996). Continuous ethanol production from nonsterilized carob pod extract by immobilized Saccharomyces cerevisiae on mineral kissiris using a two-reactor system. Appl Biochem Biotech 59(3): 299-307, doi: 10.1007/BF02783571
  • Roukas, T. (1998). Carob pod: A new substrate for citric acid production by Aspergillus niger. Appl Biochem Biotech 74(1): 43-53, doi: 10.1007/BF02786885
  • Saharkhiz, S., Mazaheri, D., Shojaosadati, S.A. (2013). Evaluation of bioethanol production from carob pods by Zymomonas mobilis and Saccharomyces cerevisiae in solid submerged fermentation. Prep Biochem Biotech 43(5): 415-430, doi: 10.1080/10826068.2012.741642
  • Sánchez, S., Lozano, L.J., Godínez, C., Juan, D., Pérez, A., Hernández, F.J. (2010). Carob pod as a feedstock for the production of bioethanol in Mediterranean areas. Appl Energ 87(11): 3417-3424, doi: 10.1016/j.apenergy.2010.06.004
  • Sánchez-Segado, S., Lozano, L.J., de los Ríos, A.P., Hernández-Fernández, F.J., Godínez, C., Juan, D. (2012). Process design and economic analysis of a hypothetical bioethanol production plant using carob pod as feedstock. Bioresource Technol 104: 324-328, doi: 10.1016/j.biortech.2011.10.046
  • Turhan, I., Bialka, K.L., Demirci, A., Karhan, M. (2010a). Enhanced lactic acid production from carob extract by Lactobacillus casei using invertase pretreatment. Food Biotechnol 24(4): 364-374, doi: 10.1080/08905436.2010.524485
  • Turhan, I., Bialka, K.L., Demirci, A., Karhan, M. (2010b). Ethanol production from carob extract by using Saccharomyces cerevisiae. Bioresource Technol 101(14): 5290-5296, doi: 10.1016/j.biortech.2010.01.146
  • Vaheed, H., Shojaosadati, S.A., Galip, H. (2011). Evaluation and optimization of ethanol production from carob pod extract by Zymomonas mobilis using response surface methodology. J Ind Microbiol Biot 38(1): 101-111, doi: 10.1007/s10295-010-0835-1
  • Yatmaz, E., Turhan, I., Karhan, M. (2013). Optimization of ethanol production from carob pod extract using immobilized Saccharomyces cerevisiae cells in a stirred tank bioreactor. Bioresource Technol 135: 365-371, doi: 10.1016/j.biortech.2012.09.006
  • Yatmaz, E., Karahalil, E., Germec, M, Ilgin, M., Turhan, I. (2016a). Controlling filamentous fungi morphology with microparticles to enhanced beta-mannanase production. Bioproc Biosyst Eng 39(9): 1391-1399, doi: 10.1007/s00449-016-1615-8
  • Yatmaz, E., Karahalil, E., Germec, M., Oziyci, H.R., Karhan, M., Duruksu, G., Ogel, Z.B., Turhan, I. (2016b). Enhanced β-mannanase production from alternative sources by recombinant Aspergillus sojae. Acta Alimentaria 45(3): 371-379, doi: 10.1556/066.2016.45.3.8
  • Yousif, A.K., Alghzawi, H.M. (2000). Processing and characterization of carob powder. Food Chem 69(3): 283-287, doi: 10.1016/S0308-8146(99)00265-4
There are 28 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ercan Yatmaz

Publication Date February 15, 2019
Published in Issue Year 2019 Volume: 44 Issue: 1

Cite

APA Yatmaz, E. (2019). CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT). Gıda, 44(1), 93-103. https://doi.org/10.15237/gida.GD18085
AMA Yatmaz E. CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT). The Journal of Food. February 2019;44(1):93-103. doi:10.15237/gida.GD18085
Chicago Yatmaz, Ercan. “CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT)”. Gıda 44, no. 1 (February 2019): 93-103. https://doi.org/10.15237/gida.GD18085.
EndNote Yatmaz E (February 1, 2019) CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT). Gıda 44 1 93–103.
IEEE E. Yatmaz, “CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT)”, The Journal of Food, vol. 44, no. 1, pp. 93–103, 2019, doi: 10.15237/gida.GD18085.
ISNAD Yatmaz, Ercan. “CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT)”. Gıda 44/1 (February 2019), 93-103. https://doi.org/10.15237/gida.GD18085.
JAMA Yatmaz E. CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT). The Journal of Food. 2019;44:93–103.
MLA Yatmaz, Ercan. “CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT)”. Gıda, vol. 44, no. 1, 2019, pp. 93-103, doi:10.15237/gida.GD18085.
Vancouver Yatmaz E. CONTINUOUS ETHANOL FERMENTATION FROM CAROB POD EXTRACT MEDIUM AT DIFFERENT HYDRAULIC RESIDENCE TIME (HRT). The Journal of Food. 2019;44(1):93-103.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/