Review
BibTex RIS Cite

MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ

Year 2022, Volume: 47 Issue: 4, 630 - 649, 30.08.2022
https://doi.org/10.15237/gida.GD22041

Abstract

Günümüzde sağlıklı ve organik gıdalara olan talep giderek artmaktadır. Bu gıdalardan biri olan mikroyeşillikler; sahip oldukları canlı renk, hassas yapı, yüksek aroma ve özellikle içerdikleri biyoaktif bileşenlerden dolayı sağlık üzerinde olumlu etkileri nedeniyle son yıllarda tüketicilerin ilgisini çekmektedir. Mikroyeşillikler çeşitli sebze, tahıl ve bitki tohumlarının çimlenmesinden sonra ilk gerçek yapraklarının oluşumunu takiben hasat edilen küçük boyutlardaki bitkilerdir. Mikroyeşilliklerin üretimi, genellikle gurme mutfaklarda kullanılmak üzere endüstriyel ve ev ölçekli olarak yaygınlaşmaktadır. Mikroyeşilliklerin raf ömürlerinin kısa olması ve çabuk bozulabilmesi nedenleriyle bu ürünlere hasat sonrası muhafaza ve depo koşullarında farklı prosedürler uygulanabilmektedir. Üretim şartları ve genellikle çiğ olarak tüketilmeleri nedeniyle olası bir kontaminasyon durumunda, mikroyeşillikler gıda kaynaklı hastalıklara yol açabilecek potansiyel riskli gıdalar olarak görülmektedir. Bu derlemede; üreticiler, tüketiciler ve araştırmacılar için önem taşıyan mikroyeşilliklerin besinsel içerikleri, sağlığa faydaları, yetiştirilme koşulları, muhafaza yöntemleri, kontaminasyon riskleri ve gıda güvenliğine dair bilgiler güncel araştırmalar ışığında kapsamlı bir şekilde sunulmuştur.

Supporting Institution

Atatürk Üniversitesi

Project Number

FDK-2021-9918

References

  • KAYNAKLAR Abad, M., Noguera, P., Bures, S. (2001). National inventory of organic wastes for use as growing media forornamental potted plant production: case study in Spain. Bioresour Technol, 77(2): 197-200, DOI: 10.1016/S0960-8524(00)00152-8
  • Agarwal, A., Gupta, S.D. (2016). Impact of light-emitting diodes (LEDs) and their potential effects on plant growth and development in controlled-environment plant production systems. Curr. Biotechnol, 5, 28–43, DOI: 10.2174/2211550104666151006001126
  • Alegbeleye, O., Singleton, I., Sant'Ana, A. (2018). Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol, 73: 177-208. DOI: 10.1016/j.fm.2018.01.003
  • Allende, A., Luo, Y., McEvoy, J.L., Artés, F., Wang, C.Y. (2004). Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions. Postharvest Biol Tec, 33(1): 51-59, DOI: 10.1016/S0925-5214(04)00071-7
  • Anonim (2020). ReportLinker. Global Microgreens Market Analysis & Trends-Industry Forecast to 2028. https://www.reportlinker.com/p06127645/Global-Microgreens-Market-Analysis-Trends-Industry-Forecast-to.html?utm_source=GNW (Erişim tarihi: 18.03.2022).
  • Artés, F., Gómez, P., Aguayo, E., Escalona, V., Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol Tec, 51(3): 287-296, DOI: 10.1016/J.POSTHARVBIO.2008.10.003
  • Baker, K.A., Beecher, L., Northcutt, J.K. (2019). Effect of irrigation water source and post-harvest washing treatment on the microflora of alfalfa and mung bean sprouts. Food Control, 100, 151–157.
  • Bergquist, S.A., Gertsson, U.E., Olsson, M.E. (2006). Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J Sci Food Agr, 86(3): 346-355, DOI: 10.1002/jsfa.2373
  • Bulgari, R., Baldi, A., Ferrante, A., Lenzi, A. (2017). Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N Z J Crop Hortic Sci, 45(2): 119–129, DOI: 10.1080/01140671.2016.1259642
  • Carter, P., Gray, L.J., Troughton, J., Khunti, K., Davies, M.J. (2010). Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ, 341, DOI: 10.1136/bmj.c4229
  • Callejón, R.M., Rodríguez-Naranjo, M.I., Ubeda, C., Hornedo-Ortega, R., Garcia-Parrilla, M.C., Troncoso, A.M. (2015). Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathogens and Disease, 12(1): 32–38, DOI: 10.1089/fpd.2014.1821
  • Carvalho, S.D., Folta, K.M. (2016). Green light control of anthocyanin production in microgreens. Proceedings of the VIII International Symposium on Light in Horticulture. 1134, 13–18, DOI: 10.17660/ActaHortic.2016.1134.2
  • CDC (Centers for Disease Control and Prevention) 2016. Foodborne outbreak online database (FOOD). http://wwwn.cdc.gov/foodborneoutbreaks/#/. (Accessed 26.05.20).
  • Cemeroğlu B. (2004). Meyve ve sebze işleme teknolojisi. 1. Cilt 2. Gıda Teknolojisi Derneği Yayınları, Ankara, Türkiye, 2, 55-60.
  • Chandra, D., Kim, J.G., Kim, Y.P. (2012). Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic Environ Biote, 53(1): 32-40, DOI: 10.1007/s13580-012-0075-6
  • Chen, M., Rao, Y., Zheng, Y., Wei, S., Li, Y., Guo, T., Yin, P. (2014). Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One, 9(2): 89288, DOI: 10.1371/journal.pone.0089288. eCollection 2014
  • Choe, U., Yu, L.L., Wang, T.T. (2018). The science behind microgreens as an exciting new food for the 21st century. J Agr Food Chem, 66(44): 11519-11530, DOI: 10.1021/acs.jafc.8b03096
  • Christensen, K.Y., Naidu, A., Parent, M.É., Pintos, J., Abrahamowicz, M., Siemiatycki J., Koushik, A. (2012). The risk of lung cancer related to dietary intake of flavonoids. Nutr Cancer, 64(7): 964-74. DOI: 10.1080/01635581.2012.717677
  • Combs, G.F., McClung, J.P. (2017). Vitamin B12. The Vitamins, Elsevier, Amsterdam, The Netherlands, pp. 431-452.
  • Crowe, S.J., Mahon, B.E., Vieira, A.R., Gould, L.H. (2015). Vital signs: multistate foodborne outbreaks-United States. Morbidity and Mortality Weekly Report, 2010-2014. 64(43): 1221-1225.
  • de la Fuente, B., López-García, G., Máñez, V., Alegría, A., Barberá, R., Cilla, A. (2019). Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods, 8(7): 250, DOI: 10.3390/foods8070250
  • Dechet, A.M., Herman, K.M., Chen Parker, C., Taormina, P., Johanson, J., Tauxe, R.V., Mahon, B.E. 2014. Outbreaks caused by sprouts, United States, 1998–2010: Lessons learned and solutions needed. Foodborne Pathogens and Disease, 11(8): 635–644.
  • Delian, E., Chira, A., Bădulescu, L., Chira, L. (2015). Insights into microgreens physiology. Sci. Papers Ser. B Hortic, 59: 447-454.
  • Di Gioia, F., De Bellis, P., Mininni, C., Santamaria, P., Serio, F. (2017). Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens, J Sci Food Agric, 97(4): 1212-1219, DOI: 10.1002/jsfa.7852
  • Di Gioia, F., Mininni, C., Santamaria, P. (2015). Come coltivare micro-ortaggi. In: Microgreens, F. Di Gioia, P. Santamaria (Eds.), ECO-logica, Bari, Italy, pp. 51-80
  • Ebert, A.W. (2013). Sprouts, microgreens, and edible flowers: the potential for high value specialty produce in Asia. SEAVEG 2012: High Value Vegetables in Southeast Asia: Production, Supply and Demand, 24-26 January 2012, Chiang Mai, Thailand, pp. 216-227.
  • Ebert, A.W., Wu, T.H., David, Yang R.Y. (2015). Amaranth sprouts and microgreens - a homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. Proceedings of the Regional Symposium on Sustaining SmallScale Vegetable Production and Marketing Systems for Food and Nutrition Security, AVRDC, 2015, Taiwan, pp. 233–244.
  • EFSA Panel on Biological Hazards (BIOHAZ), (2011). Scientific opinion on the risk posed by shiga toxin-producing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds. EFSA Journal, 9(11): 2424, pp. 101.
  • Fidan, A.F., Dündar, Y. (2007). Yucca schidigera ve içerdiği saponinler ile fenolik bileşiklerinin, hipokolesterolemik ve antioksidan etkileri (Derleme). Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 47(2): 31-39.
  • Flakelar, C.L., Prenzler, P.D., Luckett, D.J., Howitt, J.A., Doran, G. (2017). A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chemistry, 214: 147-155.
  • Frank, C., Faber, M.S., Askar, M., Bernard, H., Fruth, A., Gilsdorf, A., Höhle, M., Karch, H., Krause, G., Prager, R., Spode, A., Stark, K., Werber, D., HUS Investigation Team. (2011). Large and ongoing outbreak of haemolytic uraemic syndrome. Eurourveillance, Germany, May 2011, 16(21): 19878.
  • Ferrarini, L., Pellegrini, N., Mazzeo, T., Miglio, C., Galati, S., Milano F., Rossi, C., Buschini, A. (2011). Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae. The British Journal of Nutrition, 107(9): 1324–1332, DOI: 10.1017/S0007114511004272
  • Geybels, M.S., Verhage, B.A., Arts, I.C., Van Schooten, F.J., Goldbohm, R.A., Van den Brandt, P.A. (2013). Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am J Epidemiol, 177(12):1388-98, DOI: 10.1093/aje/kws419
  • Ghoora, M.D., Babu, D.R., Srividya, N. (2020). Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal, 91: 103495, DOI: 10.1016/j.jfca.2020.103495
  • Goodburn, C., Wallace, C.A. (2013). The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control, 32, 418–427.
  • Halliwell B. 2007. Dietary polyphenols: good, bad, or indifferent for your health. Cardiovascular Research, 73, 341-347.
  • Haytowitz, D.B., Peterson, J., Booth, S. (2002). Phylloquinone (Vitamin K) content of vegetables and vegetable products. In IFT Annual Meeting and Food Expo, 15-19 June, Anaheim, CA.
  • Hodges, D.M., Toivonen, P.M. (2008). Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol Tec, 48(2): 155-162, DOI: 10.1016/j.postharvbio.2007.10.016
  • Huang, H., Jiang, X., Xiao, Z., Yu, L., Pham, Q., Sun, J., Chen, P., Yokoyama, W., Yu, L.L., Luo, Y.S. (2016). Red cabbage microgreens lower circulating low-density lipoprotein (LDL), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. J Agric Food Chem, 64(48): 9161-9171, DOI: 10.1021/acs.jafc.6b03805
  • Hui, C., Qi, X., Qianyong, Z., Xiaoli, P., Jundong, Z., Mantian, M. (2013). Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One, 8(1): e54318, DOI: 10.1371/journal.pone.0054318
  • Iacumin, L., Comi, G. (2019). Microbial quality of raw and ready-to-eat mung bean sprouts produced in Italy. Food microbiology, 82: 371–377, DOI: 10.1016/j.fm.2019.03.014
  • Ilakiya, T., Parameswari, E., Davamani, V., Prakash, V. (2020). Microgreens-combacting malnutrition problem. Research Today. 2(5): 110-112.
  • Işık, H., Topalcengiz, Z., Güner, S., Aksoy, A. (2020). Generic and Shiga toxin-producing Escherichia coli (O157: H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control, 111: 107079, DOI: 10.1016/j.foodcont.2019.107079
  • Jang, H.W., Moon, J.K., Shibamoto, T. (2015). Analysis and antioxidant activity of extracts from broccoli (Brassica oleracea L.) sprouts. J. Agric. Food. Che, 63(4): 1169–1174, DOI: 10.1021/jf504929m
  • Janovská, D., Stocková, L., Stehno, Z. (2010). Evaluation of buckwheat sprouts as microgreens. Acta Agric. Slo, 95(2): 157, DOI: 10.2478/v10014-010-0012-2
  • Jiang, X., Huang, H., Xiao, Z., Yu, L., Pham, Q., Yu, L.L., Luo, Y., Wang, T.T. (2016). Lipids and cholesterol-lowering activity of red cabbage microgreens. The FASEB Journal, 30(1): 431.8
  • Jones-Baumgardt, C., Llewellyn, D., Ying,Q., Zheng, Y. (2019). Intensity of sole-source lightemitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience, 54: 1168–1174, DOI: 10.21273/HORTSCI13788-18
  • Klopsch, R., Baldermann, S., Voss, A., Rohn, S., Schreiner, M., Neugart, S. (2018). Bread enriched with legume microgreens and leaves–ontogenetic and baking-driven changes in the profile of secondary plant metabolites. Front Chem, 6, 322, DOI: 10.3389/fchem.2018.00322
  • Koley, T.K. (2016). Microgreens from vegetables: More nutrition for better health. New Age Protect Cult, 2(2): 25-27.
  • Kopsell, D.A., Sams, C.E. (2013). Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J Am Soc Hortic Sci, 138 (1): 31-37, DOI: 10.21273/JASHS.138.1.31
  • Kopsell, D.A., Sams, C.E., Barickman, T.C., Morrow, R.C. (2014). Sprouting broccoli accumulate higher concentrations of nutritionally important metab‐olites under narrow‐band light‐emitting diode lighting. J. Am. SocHort Sci, 139: 469–477, DOI: 10.21273/JASHS.139.4.469
  • Kou, L., Luo, Y., Yang, T., Xiao, Z., Turner, E.R., Lester, G.E., Wang, Q., Camp, M.J. (2013). Postharvest biology, quality and shelf life of buckwheat microgreens. LWT-Food Sci Technol, 51(1): 73-78, DOI: 10.1016/j.lwt.2012.11.017
  • Kou, L., Yang, T., Luo, Y., Liu, X., Huang, L., Codling, E. (2014). Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest Biol Tec, 87, 70-78, DOI: 10.1016/j.postharvbio.2013.08.004
  • Kowitcharoen, L., Phornvillay, S., Lekkham, P., Pongprasert, N., Srilaong, V. (2021). Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci, 11, 7981, DOI: 10.3390/app11177981
  • Kumar, N., Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep, 24, 1–10. DOI: 10.1016/j.btre.2019.e00370
  • Kyriacou, M.C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G.A., Giordano, M., Palladino, M., Ritieni, A., De Pascale, S., Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9(3): 252, DOI: 10.3390/antiox9030252
  • Kyriacou, M.C., Rouphael, Y., Di Gioia, F., Kyratzis, A., Serio, F., Renna, M., De Pascale, S., Santamaria, P. (2016). Micro-scale vegetable production and the rise of microgreens. Trends Food Sci Technol, 57, 103-115, DOI: 10.1016/j.tifs.2016.09.005
  • Le, T.N., Chiu, C.H., Hsieh, P.C. (2020). Bioactive compounds and bioactivities of Brassica oleracea L. var. Italica sprouts and microgreens: An updated overview from a nutraceutical perspective. Plants, 9, 946, DOI:10.3390/plants9080946
  • Ma, L., Lin, X.M. (2010). Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agr, 90(1): 2-12, DOI: 10.1002/jsfa.3785
  • Machado-Moreira, B., Richards, K., Brennan, F., Abram, F., Burgess, C.M. (2019). Microbial contamination of fresh produce: What, Where, and How?. Comprehensive Reviews İn Food Science And Food Safety, 18(6): 1727-1750.
  • Malar, D.S., Devi, K.P. (2014). Dietary polyphenols for treatment of Alzheimer's disease- future research and development. Curr Pharm Biotechnol, 15(4): 330-42, DOI: 10.2174/1389201015666140813122703
  • Marchioni, I., Martinelli, M., Ascrizzi, R., Gabbrielli, C., Flamini, G., Pistelli, L., Pistelli L. (2021). Small functional foods: comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods, 10, 427, DOI: 10.3390/foods10020427
  • Martínez-Villaluenga, C., Frías, J., Gulewicz, P., Gulewicz, K., Vidal-Valverde, C. (2008). Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol, 46(5): 1635-1644, DOI: 10.1016/j.fct.2008.01.004
  • Mir, S.A., Shah, M.A., Mir, M.M. (2017). Microgreens: Production, shelf life, and bioactive components. Crit Rev Food Sci Nutr, 57(12): 2730-2736, DOI: 10.1080/10408398.2016.1144557
  • Misra, G., Gibson, K.E. (2020). Survival of Salmonella enterica subsp. enterica serovar Javiana and Listeria monocytogenes is dependent on type of soil-free microgreen cultivation matrix. J. Appl. Microbiol, Advance online publication. DOI: 10.1111/jam.14696
  • Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P., Malik, A.B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Sign, 20(7): 1126-116, DOI: 10.1089/ars.2012.5149
  • Murphy, C., Pill, W. (2010). Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). J Hortic Sci Biotech, 85(3): 171-176, DOI: 10.1080/14620316.2010.11512650
  • Murphy, C.J., Llort, K.F., Pill, W.G. (2010). Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci, 16(3): 253-266, DOI: 10.1080/19315261003648241
  • Nagar, V., Hajare, S. N., Saroj, S. D., Bandekar, J. R. (2012). Radiation processing of minimally processed sprouts (dew gram and chickpea): Effect on sensory, nutritional and microbiological quality. International Journal of Food Science and Technology, 47: 620–626.
  • National Advisory Committee on Microbiological Criteria for Foods (NACMCF), (1999). Microbiological safety evaluations and recommendations on sprouted seeds. International Journal of Food Microbiology, 52, 123-53.
  • Natvig, E.E., Ingham, S.C., Ingham, B.H., Cooperband, L.R., Roper, T.R. (2002). Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol, 68(6): 2737-2744, DOI: 10.1128/AEM.68.6.2737-2744.2002
  • Othman, A.J., Vodorezova, E.S., Mardini, M., Hanana, M.B. (2022). Dataset for the content of bioactive components and phytonutrients of (Ocimum basilicum and Brassica rapa) microgreens. Data in Brief, 40, 107737.
  • Ötleş, S., Yeşim, A. (1997). Karotenoidlerin insan sağlığı açısından önemi. Pamukkale Univ. J. Eng. Sci. 3(1): 249-254.
  • Pinto, E., Almeida, A.A., Aguiar, A.A., Ferreira, I.M. (2015). Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J Food Compost Anal, 37: 38-43, DOI:10.1016/J.JFCA.2014.06.018
  • Rajagopal, S., Gupta, A., Parveen, R., Shukla, N., Bhattacharya, S., Naravula, J., Suravajhala, P. (2021). Vitamin K in human health and metabolism: A nutri-genomics review. Trends in Food Science & Technology.
  • Reed, E., Ferreira, C.M., Bell, R., Brown, E.W., Zheng, J. (2018). Plant-microbe and abiotic factors influencing Salmonella survival and growth on alfalfa sprouts and Swiss chard microgreens. Appl. Environ. Microbiol, 84(9): e02814-17, DOI: 10.1128/AEM.02814-17
  • Renna, M., Di Gioia, F., Leoni, B., Mininni, C., Santamaria, P. (2017). Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. J. Culin. Sci. Technol, 15(2): 126-142, DOI: 10.1080/15428052.2016.1225534
  • Rigalli, J.P., Tocchetti, G.N., Arana, M.R., Villanueva, S.S., Catania, V.A., Theile, D., Ruiz, M.L., Weiss, J. (2016). The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett, 376(1): 165-72, DOI: 10.1016/j.canlet.2016.03.040
  • Riggio, G.M., Wang, Q., Kniel, K.E., Gibson, K.E. (2019). Microgreens-A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol, 290, 76-85, DOI: 10.1016/j.ijfoodmicro.2018.09.027
  • Samuolienė, G., Brazaitytė, A., Viršilė, A., Jankauskienė, J., Sakalauskienė, S., Duchovskis, P. (2016). Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PloS One, 11(9): e0163405, DOI: 10.1371/journal.pone.0163405
  • Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Sakalauskienė, S., Vaštakaitė, V., Novičkovas, A., Viškelienė, A., Sasnauskas, A., Duchovskis, P. (2017). Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem, 228, 50-56, DOI: 10.1016/j.foodchem.2017.01.144
  • Samuolienė, G., Brazaitytė, A., Viršilė, A., Miliauskienė, J., Vaštakaitė-Kairienė, V., Duchovskis, P. (2019). Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra. Front. Plant Sci, 10, 1475, DOI: 10.3389/fpls.2019.01475
  • Sangronis, E., Machado, C.J. (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci. Technol, 40, 116–120, DOI: 10.1016/j.lwt.2005.08.003
  • Sevindik M. (2018). Pharmacological properties of Mentha Species. J Tradit Med Clin Natur, 7, 259-263.
  • Singh, J., Upadhyay, A., Bahadur, A., Singh, B., Singh, K., Rai, M. (2006). Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic, 108(3): 233-237, DOI: 10.1016/j.scienta.2006.01.017
  • Singh, M., Choudhary, A., Kumar, A. (2021). Microgreens: A nutritional food. Biotica Research Today, 3(7): 612-613.
  • Smirnoff, N., Wheeler, G.L. (2000). Ascorbic acid in plants: Biosynthesis and function. Critical Reviews in Plant Sciences, 19(4), 267-290.
  • Subedi, L., Cho, K., Park, Y.U., Choi, H.J., Kim, S.Y. (2019). Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. Oxidative Medicine and Cellular Longevity, DOI: 10.1155/2019/3549274
  • Sun, J., Kou, L., Geng, P., Huang, H., Yang, T., Luo, Y., Chen, P. (2015). Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem, 63(6): 1863-1868, DOI: 10.1021/jf504710r
  • Sun, J., Xiao, Z., Lin, L.-z., Lester, G.E., Wang, Q., Harnly, J.M., Chen, P. (2013). Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem, 61(46): 10960-10970, DOI: 10.1021/jf401802n
  • Tangney, C.C., Rasmussen, H.E. (2013). Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep, 15(5): 324, DOI: 10.1007/s11883-013-0324-x
  • Taormina, P.J., Beuchat, L.R., Slutsker, L. (1999). Infections associated with eating seed sprouts: an international concern. Emerg. Infect. Dis, 5, 626-634, DOI: 10.3201/eid0505.990503
  • Tęcza, P., Żylińska, L. (2016). Preventive effects of curcumin and resveratrol in Alzheimer’s disease. Przegl Lek, 73(5): 320-3 Thenmozhi, A.J., Manivasagam, T., Essa, M.M. (2016). Role of plant polyphenols in Alzheimer's disease. Adv Neurobiol, 12, 153-71, DOI: 10.1007/978-3-319-28383-8
  • Topalcengiz, Z., Danyluk, M.D. (2019). Fate of generic and Shiga toxin-producing Escherichia coli (STEC) in Central Florida surface waters and evaluation of EPA Worst Case water as standard medium. Food Res. Int, 120, 322-329, DOI: 10.1016/j.foodres.2019.02.045
  • Topalcengiz, Z., McEgan, R. Danyluk, M.D. (2019). Fate of Salmonella in Central Florida surface waters and evaluation of EPA worst case water as a standard medium. J. Food Prot, 82(6): 916-925, DOI: 10.4315/0362-028X.JFP-18-331
  • Treadwell, D.D., Hochmuth, R., Landrum, L., Laughlin, W. (2010). Microgreens: A new specialty crop. University of Florida IFAS Extension HS1164, 3.
  • Turner, E.R., Luo, Y., Buchanan, R.L. (2020). Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci, 85, 870-882, DOI: 10.1111/1750-3841.15049
  • Vaštakaitė, V., Viršilė, A., Brazaitytė, A., Samuolienė, G., Jankauskienė, J., Novičkovas, A., Duchovskis, P. (2017). Pulsed light-emitting diodes for a higher phytochemical level in microgreens. J. Agric. Food Chem, 65, 6529–6534, DOI: 10.1021/acs.jafc.7b01214
  • Villaflores, O.B., Chen, Y.J., Chen, C.P., Yeh, J.M., Wu, T.Y. (2012). Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol, 51(4): 515-25, DOI: 10.1016/j.tjog.2012.09.005
  • Visioli, F., Borsani, L. ve Gali, C. (2000). Diet and prevention of coronary heart disease: the potential role of phytochemicals. Cardiovascular Research, 47, 149-425.
  • Wadhawan, S., Tripathi, J., Gautam, S. (2017). In vitro regulation of enzymatic release of glucose and its uptake by fenugreek microgreen and mint leaf extract. International Journal of Food Science and Technology, 53, 320-326, DOI: 10.1111/ijfs.13588
  • Waje, C.K., Kwon, J.H. (2007). Improving the food safety of seed sprouts through irradiation treatment. Food Science and Biotechnology, 16, 171-176.
  • Wang, Q., Kniel, K.E. (2016). Survival and transfer of murine norovirus within a hydroponic system during kale and mustard microgreen harvesting. Appl. Environ. Microbiol, 82: 705-713, DOI: 10.1128/AEM.02990-15
  • Weber, C.F. (2017). Broccoli microgreens: a mineral-rich crop that can diversify food systems. Front. Nutr, 4, 7, DOI: 10.3389/fnut.2017.00007
  • White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets-Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49-84. DOI: 10.1111/j.1469-8137.2008.02738.x
  • Wojdylo, A., Nowicka, P., Tkacz, K., Turkiewicz, I.P. (2020). Sprouts vs. microgreens as novel functional foods: variation of nutritional and phytochemical profiles and their ın vitro bioactive properties. Molecules, 25(20): 4648, DOI: 10.3390/molecules25204648
  • Woo, H.D., Lee, J., Choi, I.J., Kim, C.G., Lee, J.Y., Kwon, O., Kim, J. (2014). Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients, 6(11): 4961-4973.
  • Wright, K.M., Holden, N.J. (2018). Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates. Int. J. Food Microbiol, 273, 1-10, DOI: 10.1016/j.ijfoodmicro.2018.02.025
  • Xiao, Z., Bauchan, G., Nichols-Russell, L., Luo, Y., Wang, Q., Nou, X. (2015). Proliferation of Escherichia coli O157: H7 in soil-substitute and hydroponic microgreen production systems. J. Food Prot, 78(10): 1785-1790, DOI: 10.4315/0362-028X.JFP-15-063
  • Xiao, Z., Codling, E.E., Luo, Y., Nou, X., Lester, G.E., Wang, Q. (2016). Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J Food Compost Anal. 49, 87-93, DOI: 10.1016/j.jfca.2016.04.006
  • Xiao, Z., Lester, G.E., Luo, Y., Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J. Agric. Food Chem, 60(31): 7644-7651, DOI: 10.1021/jf300459b
  • Xiao, Z., Luo, Y., Lester, G.E., Kou, L., Yang, T., Wang, Q. (2014a). Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT-Food Sci Techno, 55(2): 551-558, DOI: 10.1016/j.lwt.2013.09.009
  • Xiao, Z., Nou, X., Luo, Y., Wang, Q. (2014b). Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiol, 44, 60-63, DOI: 10.1016/j.fm.2014.05.015
  • Xiao, Z., Rauscha, S.R., Luoa, Y., Sunc, J., Yud, L., Wang, Q., Chenc, P., Yud, L., Stommel, J.R. (2019). Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT-Food Sci Techno, 101, 731-737. DOI: 10.1016/j.lwt.2018.10.076
  • Xu, L., Nagata, N., Ota, T. (2018). Glucoraphanin: A broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte, 7, 218–225. DOI: 10.1080/21623945.2018.1474669
  • Yetim, H., Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M. (2010). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda, 35(3): 205-210.
  • Yu, H., Neal, J.A., Sirsat, S.A. (2018). Consumers’ food safety risk perceptions and willingness to pay for fresh-cut produce with lower risk of foodborne illness. Food Control, 86, 83-89.
  • Zhang, C., Lu, Z., Li, Y., Shang, Y., Zhang, G., Cao, W. (2011). Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water. Food Control, 22, 792-796.
  • Zhou, Y., Zheng, J., Li, Y., Xu, D.P., Li, S., Chen, Y.M., Li, H.B. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8): 515, DOI: 10.3390/nu8080515
  • Zou, L., Tan, W.K., Du, Y., Lee, H.W., Liang, X., Lei, J., ... and Ong, C.N. (2021). Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: Microgreen, seedling and adult plant. Food Chemistry, 357, 129535.

MICROGREENS: NUTRITIONAL CONTENT, HEALTH EFFECT, PRODUCTION, AND FOOD SAFETY

Year 2022, Volume: 47 Issue: 4, 630 - 649, 30.08.2022
https://doi.org/10.15237/gida.GD22041

Abstract

Demand for healthy and organic foods have been enourmously increasing. Microgreens are small-sized various vegetables, cereal and plant seeds harvested after the formation of the first true real leaves on germinated plants. Microgreens attract consumers attention with via their vibrant bright color, fragile structure and positive effects on health, especially with high amounts of bioactive components. Industrial and household production of microgreens have been increasing as a new gourmet culinary ingredient. The short shelf life and fast degradation of the microgreens requires the application of different procedures in the optimization of storage methods and conditions after the harvest. Food safety risks associated with the consumption of microgreens differ from mature vegetables due to growth conditions. In this review; The nutritional content, health benefits, growing conditions, storage methods, contamination risks and safety of microgreens, which are important for producers, consumers and researchers, have been comprehensively reviewed in the light of current research.

Project Number

FDK-2021-9918

References

  • KAYNAKLAR Abad, M., Noguera, P., Bures, S. (2001). National inventory of organic wastes for use as growing media forornamental potted plant production: case study in Spain. Bioresour Technol, 77(2): 197-200, DOI: 10.1016/S0960-8524(00)00152-8
  • Agarwal, A., Gupta, S.D. (2016). Impact of light-emitting diodes (LEDs) and their potential effects on plant growth and development in controlled-environment plant production systems. Curr. Biotechnol, 5, 28–43, DOI: 10.2174/2211550104666151006001126
  • Alegbeleye, O., Singleton, I., Sant'Ana, A. (2018). Sources and contamination routes of microbial pathogens to fresh produce during field cultivation: a review. Food Microbiol, 73: 177-208. DOI: 10.1016/j.fm.2018.01.003
  • Allende, A., Luo, Y., McEvoy, J.L., Artés, F., Wang, C.Y. (2004). Microbial and quality changes in minimally processed baby spinach leaves stored under super atmospheric oxygen and modified atmosphere conditions. Postharvest Biol Tec, 33(1): 51-59, DOI: 10.1016/S0925-5214(04)00071-7
  • Anonim (2020). ReportLinker. Global Microgreens Market Analysis & Trends-Industry Forecast to 2028. https://www.reportlinker.com/p06127645/Global-Microgreens-Market-Analysis-Trends-Industry-Forecast-to.html?utm_source=GNW (Erişim tarihi: 18.03.2022).
  • Artés, F., Gómez, P., Aguayo, E., Escalona, V., Artés-Hernández, F. (2009). Sustainable sanitation techniques for keeping quality and safety of fresh-cut plant commodities. Postharvest Biol Tec, 51(3): 287-296, DOI: 10.1016/J.POSTHARVBIO.2008.10.003
  • Baker, K.A., Beecher, L., Northcutt, J.K. (2019). Effect of irrigation water source and post-harvest washing treatment on the microflora of alfalfa and mung bean sprouts. Food Control, 100, 151–157.
  • Bergquist, S.A., Gertsson, U.E., Olsson, M.E. (2006). Influence of growth stage and postharvest storage on ascorbic acid and carotenoid content and visual quality of baby spinach (Spinacia oleracea L.). J Sci Food Agr, 86(3): 346-355, DOI: 10.1002/jsfa.2373
  • Bulgari, R., Baldi, A., Ferrante, A., Lenzi, A. (2017). Yield and quality of basil, Swiss chard, and rocket microgreens grown in a hydroponic system. N Z J Crop Hortic Sci, 45(2): 119–129, DOI: 10.1080/01140671.2016.1259642
  • Carter, P., Gray, L.J., Troughton, J., Khunti, K., Davies, M.J. (2010). Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ, 341, DOI: 10.1136/bmj.c4229
  • Callejón, R.M., Rodríguez-Naranjo, M.I., Ubeda, C., Hornedo-Ortega, R., Garcia-Parrilla, M.C., Troncoso, A.M. (2015). Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathogens and Disease, 12(1): 32–38, DOI: 10.1089/fpd.2014.1821
  • Carvalho, S.D., Folta, K.M. (2016). Green light control of anthocyanin production in microgreens. Proceedings of the VIII International Symposium on Light in Horticulture. 1134, 13–18, DOI: 10.17660/ActaHortic.2016.1134.2
  • CDC (Centers for Disease Control and Prevention) 2016. Foodborne outbreak online database (FOOD). http://wwwn.cdc.gov/foodborneoutbreaks/#/. (Accessed 26.05.20).
  • Cemeroğlu B. (2004). Meyve ve sebze işleme teknolojisi. 1. Cilt 2. Gıda Teknolojisi Derneği Yayınları, Ankara, Türkiye, 2, 55-60.
  • Chandra, D., Kim, J.G., Kim, Y.P. (2012). Changes in microbial population and quality of microgreens treated with different sanitizers and packaging films. Hortic Environ Biote, 53(1): 32-40, DOI: 10.1007/s13580-012-0075-6
  • Chen, M., Rao, Y., Zheng, Y., Wei, S., Li, Y., Guo, T., Yin, P. (2014). Association between soy isoflavone intake and breast cancer risk for pre- and post-menopausal women: a meta-analysis of epidemiological studies. PLoS One, 9(2): 89288, DOI: 10.1371/journal.pone.0089288. eCollection 2014
  • Choe, U., Yu, L.L., Wang, T.T. (2018). The science behind microgreens as an exciting new food for the 21st century. J Agr Food Chem, 66(44): 11519-11530, DOI: 10.1021/acs.jafc.8b03096
  • Christensen, K.Y., Naidu, A., Parent, M.É., Pintos, J., Abrahamowicz, M., Siemiatycki J., Koushik, A. (2012). The risk of lung cancer related to dietary intake of flavonoids. Nutr Cancer, 64(7): 964-74. DOI: 10.1080/01635581.2012.717677
  • Combs, G.F., McClung, J.P. (2017). Vitamin B12. The Vitamins, Elsevier, Amsterdam, The Netherlands, pp. 431-452.
  • Crowe, S.J., Mahon, B.E., Vieira, A.R., Gould, L.H. (2015). Vital signs: multistate foodborne outbreaks-United States. Morbidity and Mortality Weekly Report, 2010-2014. 64(43): 1221-1225.
  • de la Fuente, B., López-García, G., Máñez, V., Alegría, A., Barberá, R., Cilla, A. (2019). Evaluation of the bioaccessibility of antioxidant bioactive compounds and minerals of four genotypes of Brassicaceae microgreens. Foods, 8(7): 250, DOI: 10.3390/foods8070250
  • Dechet, A.M., Herman, K.M., Chen Parker, C., Taormina, P., Johanson, J., Tauxe, R.V., Mahon, B.E. 2014. Outbreaks caused by sprouts, United States, 1998–2010: Lessons learned and solutions needed. Foodborne Pathogens and Disease, 11(8): 635–644.
  • Delian, E., Chira, A., Bădulescu, L., Chira, L. (2015). Insights into microgreens physiology. Sci. Papers Ser. B Hortic, 59: 447-454.
  • Di Gioia, F., De Bellis, P., Mininni, C., Santamaria, P., Serio, F. (2017). Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens, J Sci Food Agric, 97(4): 1212-1219, DOI: 10.1002/jsfa.7852
  • Di Gioia, F., Mininni, C., Santamaria, P. (2015). Come coltivare micro-ortaggi. In: Microgreens, F. Di Gioia, P. Santamaria (Eds.), ECO-logica, Bari, Italy, pp. 51-80
  • Ebert, A.W. (2013). Sprouts, microgreens, and edible flowers: the potential for high value specialty produce in Asia. SEAVEG 2012: High Value Vegetables in Southeast Asia: Production, Supply and Demand, 24-26 January 2012, Chiang Mai, Thailand, pp. 216-227.
  • Ebert, A.W., Wu, T.H., David, Yang R.Y. (2015). Amaranth sprouts and microgreens - a homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. Proceedings of the Regional Symposium on Sustaining SmallScale Vegetable Production and Marketing Systems for Food and Nutrition Security, AVRDC, 2015, Taiwan, pp. 233–244.
  • EFSA Panel on Biological Hazards (BIOHAZ), (2011). Scientific opinion on the risk posed by shiga toxin-producing Escherichia coli (STEC) and other pathogenic bacteria in seeds and sprouted seeds. EFSA Journal, 9(11): 2424, pp. 101.
  • Fidan, A.F., Dündar, Y. (2007). Yucca schidigera ve içerdiği saponinler ile fenolik bileşiklerinin, hipokolesterolemik ve antioksidan etkileri (Derleme). Lalahan Hayvancılık Araştırma Enstitüsü Dergisi, 47(2): 31-39.
  • Flakelar, C.L., Prenzler, P.D., Luckett, D.J., Howitt, J.A., Doran, G. (2017). A rapid method for the simultaneous quantification of the major tocopherols, carotenoids, free and esterified sterols in canola (Brassica napus) oil using normal phase liquid chromatography. Food Chemistry, 214: 147-155.
  • Frank, C., Faber, M.S., Askar, M., Bernard, H., Fruth, A., Gilsdorf, A., Höhle, M., Karch, H., Krause, G., Prager, R., Spode, A., Stark, K., Werber, D., HUS Investigation Team. (2011). Large and ongoing outbreak of haemolytic uraemic syndrome. Eurourveillance, Germany, May 2011, 16(21): 19878.
  • Ferrarini, L., Pellegrini, N., Mazzeo, T., Miglio, C., Galati, S., Milano F., Rossi, C., Buschini, A. (2011). Anti-proliferative activity and chemoprotective effects towards DNA oxidative damage of fresh and cooked Brassicaceae. The British Journal of Nutrition, 107(9): 1324–1332, DOI: 10.1017/S0007114511004272
  • Geybels, M.S., Verhage, B.A., Arts, I.C., Van Schooten, F.J., Goldbohm, R.A., Van den Brandt, P.A. (2013). Dietary flavonoid intake, black tea consumption, and risk of overall and advanced stage prostate cancer. Am J Epidemiol, 177(12):1388-98, DOI: 10.1093/aje/kws419
  • Ghoora, M.D., Babu, D.R., Srividya, N. (2020). Nutrient composition, oxalate content and nutritional ranking of ten culinary microgreens. J. Food Compos. Anal, 91: 103495, DOI: 10.1016/j.jfca.2020.103495
  • Goodburn, C., Wallace, C.A. (2013). The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control, 32, 418–427.
  • Halliwell B. 2007. Dietary polyphenols: good, bad, or indifferent for your health. Cardiovascular Research, 73, 341-347.
  • Haytowitz, D.B., Peterson, J., Booth, S. (2002). Phylloquinone (Vitamin K) content of vegetables and vegetable products. In IFT Annual Meeting and Food Expo, 15-19 June, Anaheim, CA.
  • Hodges, D.M., Toivonen, P.M. (2008). Quality of fresh-cut fruits and vegetables as affected by exposure to abiotic stress. Postharvest Biol Tec, 48(2): 155-162, DOI: 10.1016/j.postharvbio.2007.10.016
  • Huang, H., Jiang, X., Xiao, Z., Yu, L., Pham, Q., Sun, J., Chen, P., Yokoyama, W., Yu, L.L., Luo, Y.S. (2016). Red cabbage microgreens lower circulating low-density lipoprotein (LDL), liver cholesterol, and inflammatory cytokines in mice fed a high-fat diet. J Agric Food Chem, 64(48): 9161-9171, DOI: 10.1021/acs.jafc.6b03805
  • Hui, C., Qi, X., Qianyong, Z., Xiaoli, P., Jundong, Z., Mantian, M. (2013). Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One, 8(1): e54318, DOI: 10.1371/journal.pone.0054318
  • Iacumin, L., Comi, G. (2019). Microbial quality of raw and ready-to-eat mung bean sprouts produced in Italy. Food microbiology, 82: 371–377, DOI: 10.1016/j.fm.2019.03.014
  • Ilakiya, T., Parameswari, E., Davamani, V., Prakash, V. (2020). Microgreens-combacting malnutrition problem. Research Today. 2(5): 110-112.
  • Işık, H., Topalcengiz, Z., Güner, S., Aksoy, A. (2020). Generic and Shiga toxin-producing Escherichia coli (O157: H7) contamination of lettuce and radish microgreens grown in peat moss and perlite. Food Control, 111: 107079, DOI: 10.1016/j.foodcont.2019.107079
  • Jang, H.W., Moon, J.K., Shibamoto, T. (2015). Analysis and antioxidant activity of extracts from broccoli (Brassica oleracea L.) sprouts. J. Agric. Food. Che, 63(4): 1169–1174, DOI: 10.1021/jf504929m
  • Janovská, D., Stocková, L., Stehno, Z. (2010). Evaluation of buckwheat sprouts as microgreens. Acta Agric. Slo, 95(2): 157, DOI: 10.2478/v10014-010-0012-2
  • Jiang, X., Huang, H., Xiao, Z., Yu, L., Pham, Q., Yu, L.L., Luo, Y., Wang, T.T. (2016). Lipids and cholesterol-lowering activity of red cabbage microgreens. The FASEB Journal, 30(1): 431.8
  • Jones-Baumgardt, C., Llewellyn, D., Ying,Q., Zheng, Y. (2019). Intensity of sole-source lightemitting diodes affects growth, yield, and quality of Brassicaceae microgreens. HortScience, 54: 1168–1174, DOI: 10.21273/HORTSCI13788-18
  • Klopsch, R., Baldermann, S., Voss, A., Rohn, S., Schreiner, M., Neugart, S. (2018). Bread enriched with legume microgreens and leaves–ontogenetic and baking-driven changes in the profile of secondary plant metabolites. Front Chem, 6, 322, DOI: 10.3389/fchem.2018.00322
  • Koley, T.K. (2016). Microgreens from vegetables: More nutrition for better health. New Age Protect Cult, 2(2): 25-27.
  • Kopsell, D.A., Sams, C.E. (2013). Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J Am Soc Hortic Sci, 138 (1): 31-37, DOI: 10.21273/JASHS.138.1.31
  • Kopsell, D.A., Sams, C.E., Barickman, T.C., Morrow, R.C. (2014). Sprouting broccoli accumulate higher concentrations of nutritionally important metab‐olites under narrow‐band light‐emitting diode lighting. J. Am. SocHort Sci, 139: 469–477, DOI: 10.21273/JASHS.139.4.469
  • Kou, L., Luo, Y., Yang, T., Xiao, Z., Turner, E.R., Lester, G.E., Wang, Q., Camp, M.J. (2013). Postharvest biology, quality and shelf life of buckwheat microgreens. LWT-Food Sci Technol, 51(1): 73-78, DOI: 10.1016/j.lwt.2012.11.017
  • Kou, L., Yang, T., Luo, Y., Liu, X., Huang, L., Codling, E. (2014). Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest Biol Tec, 87, 70-78, DOI: 10.1016/j.postharvbio.2013.08.004
  • Kowitcharoen, L., Phornvillay, S., Lekkham, P., Pongprasert, N., Srilaong, V. (2021). Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci, 11, 7981, DOI: 10.3390/app11177981
  • Kumar, N., Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep, 24, 1–10. DOI: 10.1016/j.btre.2019.e00370
  • Kyriacou, M.C., El-Nakhel, C., Pannico, A., Graziani, G., Soteriou, G.A., Giordano, M., Palladino, M., Ritieni, A., De Pascale, S., Rouphael, Y. (2020). Phenolic constitution, phytochemical and macronutrient content in three species of microgreens as modulated by natural fiber and synthetic substrates. Antioxidants, 9(3): 252, DOI: 10.3390/antiox9030252
  • Kyriacou, M.C., Rouphael, Y., Di Gioia, F., Kyratzis, A., Serio, F., Renna, M., De Pascale, S., Santamaria, P. (2016). Micro-scale vegetable production and the rise of microgreens. Trends Food Sci Technol, 57, 103-115, DOI: 10.1016/j.tifs.2016.09.005
  • Le, T.N., Chiu, C.H., Hsieh, P.C. (2020). Bioactive compounds and bioactivities of Brassica oleracea L. var. Italica sprouts and microgreens: An updated overview from a nutraceutical perspective. Plants, 9, 946, DOI:10.3390/plants9080946
  • Ma, L., Lin, X.M. (2010). Effects of lutein and zeaxanthin on aspects of eye health. J Sci Food Agr, 90(1): 2-12, DOI: 10.1002/jsfa.3785
  • Machado-Moreira, B., Richards, K., Brennan, F., Abram, F., Burgess, C.M. (2019). Microbial contamination of fresh produce: What, Where, and How?. Comprehensive Reviews İn Food Science And Food Safety, 18(6): 1727-1750.
  • Malar, D.S., Devi, K.P. (2014). Dietary polyphenols for treatment of Alzheimer's disease- future research and development. Curr Pharm Biotechnol, 15(4): 330-42, DOI: 10.2174/1389201015666140813122703
  • Marchioni, I., Martinelli, M., Ascrizzi, R., Gabbrielli, C., Flamini, G., Pistelli, L., Pistelli L. (2021). Small functional foods: comparative phytochemical and nutritional analyses of five microgreens of the Brassicaceae family. Foods, 10, 427, DOI: 10.3390/foods10020427
  • Martínez-Villaluenga, C., Frías, J., Gulewicz, P., Gulewicz, K., Vidal-Valverde, C. (2008). Food safety evaluation of broccoli and radish sprouts. Food Chem Toxicol, 46(5): 1635-1644, DOI: 10.1016/j.fct.2008.01.004
  • Mir, S.A., Shah, M.A., Mir, M.M. (2017). Microgreens: Production, shelf life, and bioactive components. Crit Rev Food Sci Nutr, 57(12): 2730-2736, DOI: 10.1080/10408398.2016.1144557
  • Misra, G., Gibson, K.E. (2020). Survival of Salmonella enterica subsp. enterica serovar Javiana and Listeria monocytogenes is dependent on type of soil-free microgreen cultivation matrix. J. Appl. Microbiol, Advance online publication. DOI: 10.1111/jam.14696
  • Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P., Malik, A.B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Sign, 20(7): 1126-116, DOI: 10.1089/ars.2012.5149
  • Murphy, C., Pill, W. (2010). Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). J Hortic Sci Biotech, 85(3): 171-176, DOI: 10.1080/14620316.2010.11512650
  • Murphy, C.J., Llort, K.F., Pill, W.G. (2010). Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci, 16(3): 253-266, DOI: 10.1080/19315261003648241
  • Nagar, V., Hajare, S. N., Saroj, S. D., Bandekar, J. R. (2012). Radiation processing of minimally processed sprouts (dew gram and chickpea): Effect on sensory, nutritional and microbiological quality. International Journal of Food Science and Technology, 47: 620–626.
  • National Advisory Committee on Microbiological Criteria for Foods (NACMCF), (1999). Microbiological safety evaluations and recommendations on sprouted seeds. International Journal of Food Microbiology, 52, 123-53.
  • Natvig, E.E., Ingham, S.C., Ingham, B.H., Cooperband, L.R., Roper, T.R. (2002). Salmonella enterica serovar Typhimurium and Escherichia coli contamination of root and leaf vegetables grown in soils with incorporated bovine manure. Appl. Environ. Microbiol, 68(6): 2737-2744, DOI: 10.1128/AEM.68.6.2737-2744.2002
  • Othman, A.J., Vodorezova, E.S., Mardini, M., Hanana, M.B. (2022). Dataset for the content of bioactive components and phytonutrients of (Ocimum basilicum and Brassica rapa) microgreens. Data in Brief, 40, 107737.
  • Ötleş, S., Yeşim, A. (1997). Karotenoidlerin insan sağlığı açısından önemi. Pamukkale Univ. J. Eng. Sci. 3(1): 249-254.
  • Pinto, E., Almeida, A.A., Aguiar, A.A., Ferreira, I.M. (2015). Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J Food Compost Anal, 37: 38-43, DOI:10.1016/J.JFCA.2014.06.018
  • Rajagopal, S., Gupta, A., Parveen, R., Shukla, N., Bhattacharya, S., Naravula, J., Suravajhala, P. (2021). Vitamin K in human health and metabolism: A nutri-genomics review. Trends in Food Science & Technology.
  • Reed, E., Ferreira, C.M., Bell, R., Brown, E.W., Zheng, J. (2018). Plant-microbe and abiotic factors influencing Salmonella survival and growth on alfalfa sprouts and Swiss chard microgreens. Appl. Environ. Microbiol, 84(9): e02814-17, DOI: 10.1128/AEM.02814-17
  • Renna, M., Di Gioia, F., Leoni, B., Mininni, C., Santamaria, P. (2017). Culinary assessment of self-produced microgreens as basic ingredients in sweet and savory dishes. J. Culin. Sci. Technol, 15(2): 126-142, DOI: 10.1080/15428052.2016.1225534
  • Rigalli, J.P., Tocchetti, G.N., Arana, M.R., Villanueva, S.S., Catania, V.A., Theile, D., Ruiz, M.L., Weiss, J. (2016). The phytoestrogen genistein enhances multidrug resistance in breast cancer cell lines by translational regulation of ABC transporters. Cancer Lett, 376(1): 165-72, DOI: 10.1016/j.canlet.2016.03.040
  • Riggio, G.M., Wang, Q., Kniel, K.E., Gibson, K.E. (2019). Microgreens-A review of food safety considerations along the farm to fork continuum. Int. J. Food Microbiol, 290, 76-85, DOI: 10.1016/j.ijfoodmicro.2018.09.027
  • Samuolienė, G., Brazaitytė, A., Viršilė, A., Jankauskienė, J., Sakalauskienė, S., Duchovskis, P. (2016). Red light-dose or wavelength-dependent photoresponse of antioxidants in herb microgreens. PloS One, 11(9): e0163405, DOI: 10.1371/journal.pone.0163405
  • Samuolienė, G., Viršilė, A., Brazaitytė, A., Jankauskienė, J., Sakalauskienė, S., Vaštakaitė, V., Novičkovas, A., Viškelienė, A., Sasnauskas, A., Duchovskis, P. (2017). Blue light dosage affects carotenoids and tocopherols in microgreens. Food Chem, 228, 50-56, DOI: 10.1016/j.foodchem.2017.01.144
  • Samuolienė, G., Brazaitytė, A., Viršilė, A., Miliauskienė, J., Vaštakaitė-Kairienė, V., Duchovskis, P. (2019). Nutrient levels in Brassicaceae microgreens increase under tailored light-emitting diode spectra. Front. Plant Sci, 10, 1475, DOI: 10.3389/fpls.2019.01475
  • Sangronis, E., Machado, C.J. (2007). Influence of germination on the nutritional quality of Phaseolus vulgaris and Cajanus cajan. LWT Food Sci. Technol, 40, 116–120, DOI: 10.1016/j.lwt.2005.08.003
  • Sevindik M. (2018). Pharmacological properties of Mentha Species. J Tradit Med Clin Natur, 7, 259-263.
  • Singh, J., Upadhyay, A., Bahadur, A., Singh, B., Singh, K., Rai, M. (2006). Antioxidant phytochemicals in cabbage (Brassica oleracea L. var. capitata). Sci. Hortic, 108(3): 233-237, DOI: 10.1016/j.scienta.2006.01.017
  • Singh, M., Choudhary, A., Kumar, A. (2021). Microgreens: A nutritional food. Biotica Research Today, 3(7): 612-613.
  • Smirnoff, N., Wheeler, G.L. (2000). Ascorbic acid in plants: Biosynthesis and function. Critical Reviews in Plant Sciences, 19(4), 267-290.
  • Subedi, L., Cho, K., Park, Y.U., Choi, H.J., Kim, S.Y. (2019). Sulforaphane-enriched broccoli sprouts pretreated by pulsed electric fields reduces neuroinflammation and ameliorates scopolamine-induced amnesia in mouse brain through its antioxidant ability via Nrf2-HO-1 activation. Oxidative Medicine and Cellular Longevity, DOI: 10.1155/2019/3549274
  • Sun, J., Kou, L., Geng, P., Huang, H., Yang, T., Luo, Y., Chen, P. (2015). Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem, 63(6): 1863-1868, DOI: 10.1021/jf504710r
  • Sun, J., Xiao, Z., Lin, L.-z., Lester, G.E., Wang, Q., Harnly, J.M., Chen, P. (2013). Profiling polyphenols in five Brassica species microgreens by UHPLC-PDA-ESI/HRMSn. J. Agric. Food Chem, 61(46): 10960-10970, DOI: 10.1021/jf401802n
  • Tangney, C.C., Rasmussen, H.E. (2013). Polyphenols, inflammation, and cardiovascular disease. Curr Atheroscler Rep, 15(5): 324, DOI: 10.1007/s11883-013-0324-x
  • Taormina, P.J., Beuchat, L.R., Slutsker, L. (1999). Infections associated with eating seed sprouts: an international concern. Emerg. Infect. Dis, 5, 626-634, DOI: 10.3201/eid0505.990503
  • Tęcza, P., Żylińska, L. (2016). Preventive effects of curcumin and resveratrol in Alzheimer’s disease. Przegl Lek, 73(5): 320-3 Thenmozhi, A.J., Manivasagam, T., Essa, M.M. (2016). Role of plant polyphenols in Alzheimer's disease. Adv Neurobiol, 12, 153-71, DOI: 10.1007/978-3-319-28383-8
  • Topalcengiz, Z., Danyluk, M.D. (2019). Fate of generic and Shiga toxin-producing Escherichia coli (STEC) in Central Florida surface waters and evaluation of EPA Worst Case water as standard medium. Food Res. Int, 120, 322-329, DOI: 10.1016/j.foodres.2019.02.045
  • Topalcengiz, Z., McEgan, R. Danyluk, M.D. (2019). Fate of Salmonella in Central Florida surface waters and evaluation of EPA worst case water as a standard medium. J. Food Prot, 82(6): 916-925, DOI: 10.4315/0362-028X.JFP-18-331
  • Treadwell, D.D., Hochmuth, R., Landrum, L., Laughlin, W. (2010). Microgreens: A new specialty crop. University of Florida IFAS Extension HS1164, 3.
  • Turner, E.R., Luo, Y., Buchanan, R.L. (2020). Microgreen nutrition, food safety, and shelf life: A review. J. Food Sci, 85, 870-882, DOI: 10.1111/1750-3841.15049
  • Vaštakaitė, V., Viršilė, A., Brazaitytė, A., Samuolienė, G., Jankauskienė, J., Novičkovas, A., Duchovskis, P. (2017). Pulsed light-emitting diodes for a higher phytochemical level in microgreens. J. Agric. Food Chem, 65, 6529–6534, DOI: 10.1021/acs.jafc.7b01214
  • Villaflores, O.B., Chen, Y.J., Chen, C.P., Yeh, J.M., Wu, T.Y. (2012). Curcuminoids and resveratrol as anti-Alzheimer agents. Taiwan J Obstet Gynecol, 51(4): 515-25, DOI: 10.1016/j.tjog.2012.09.005
  • Visioli, F., Borsani, L. ve Gali, C. (2000). Diet and prevention of coronary heart disease: the potential role of phytochemicals. Cardiovascular Research, 47, 149-425.
  • Wadhawan, S., Tripathi, J., Gautam, S. (2017). In vitro regulation of enzymatic release of glucose and its uptake by fenugreek microgreen and mint leaf extract. International Journal of Food Science and Technology, 53, 320-326, DOI: 10.1111/ijfs.13588
  • Waje, C.K., Kwon, J.H. (2007). Improving the food safety of seed sprouts through irradiation treatment. Food Science and Biotechnology, 16, 171-176.
  • Wang, Q., Kniel, K.E. (2016). Survival and transfer of murine norovirus within a hydroponic system during kale and mustard microgreen harvesting. Appl. Environ. Microbiol, 82: 705-713, DOI: 10.1128/AEM.02990-15
  • Weber, C.F. (2017). Broccoli microgreens: a mineral-rich crop that can diversify food systems. Front. Nutr, 4, 7, DOI: 10.3389/fnut.2017.00007
  • White, P.J., Broadley, M.R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets-Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist, 182, 49-84. DOI: 10.1111/j.1469-8137.2008.02738.x
  • Wojdylo, A., Nowicka, P., Tkacz, K., Turkiewicz, I.P. (2020). Sprouts vs. microgreens as novel functional foods: variation of nutritional and phytochemical profiles and their ın vitro bioactive properties. Molecules, 25(20): 4648, DOI: 10.3390/molecules25204648
  • Woo, H.D., Lee, J., Choi, I.J., Kim, C.G., Lee, J.Y., Kwon, O., Kim, J. (2014). Dietary flavonoids and gastric cancer risk in a Korean population. Nutrients, 6(11): 4961-4973.
  • Wright, K.M., Holden, N.J. (2018). Quantification and colonisation dynamics of Escherichia coli O157:H7 inoculation of microgreens species and plant growth substrates. Int. J. Food Microbiol, 273, 1-10, DOI: 10.1016/j.ijfoodmicro.2018.02.025
  • Xiao, Z., Bauchan, G., Nichols-Russell, L., Luo, Y., Wang, Q., Nou, X. (2015). Proliferation of Escherichia coli O157: H7 in soil-substitute and hydroponic microgreen production systems. J. Food Prot, 78(10): 1785-1790, DOI: 10.4315/0362-028X.JFP-15-063
  • Xiao, Z., Codling, E.E., Luo, Y., Nou, X., Lester, G.E., Wang, Q. (2016). Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J Food Compost Anal. 49, 87-93, DOI: 10.1016/j.jfca.2016.04.006
  • Xiao, Z., Lester, G.E., Luo, Y., Wang, Q. (2012). Assessment of vitamin and carotenoid concentrations of emerging food products: edible microgreens. J. Agric. Food Chem, 60(31): 7644-7651, DOI: 10.1021/jf300459b
  • Xiao, Z., Luo, Y., Lester, G.E., Kou, L., Yang, T., Wang, Q. (2014a). Postharvest quality and shelf life of radish microgreens as impacted by storage temperature, packaging film, and chlorine wash treatment. LWT-Food Sci Techno, 55(2): 551-558, DOI: 10.1016/j.lwt.2013.09.009
  • Xiao, Z., Nou, X., Luo, Y., Wang, Q. (2014b). Comparison of the growth of Escherichia coli O157: H7 and O104: H4 during sprouting and microgreen production from contaminated radish seeds. Food Microbiol, 44, 60-63, DOI: 10.1016/j.fm.2014.05.015
  • Xiao, Z., Rauscha, S.R., Luoa, Y., Sunc, J., Yud, L., Wang, Q., Chenc, P., Yud, L., Stommel, J.R. (2019). Microgreens of Brassicaceae: Genetic diversity of phytochemical concentrations and antioxidant capacity. LWT-Food Sci Techno, 101, 731-737. DOI: 10.1016/j.lwt.2018.10.076
  • Xu, L., Nagata, N., Ota, T. (2018). Glucoraphanin: A broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte, 7, 218–225. DOI: 10.1080/21623945.2018.1474669
  • Yetim, H., Öztürk, İ., Törnük, F., Sağdıç, O., Hayta, M. (2010). Yenilebilir bitki ve tohum filizlerinin fonksiyonel özellikleri. Gıda, 35(3): 205-210.
  • Yu, H., Neal, J.A., Sirsat, S.A. (2018). Consumers’ food safety risk perceptions and willingness to pay for fresh-cut produce with lower risk of foodborne illness. Food Control, 86, 83-89.
  • Zhang, C., Lu, Z., Li, Y., Shang, Y., Zhang, G., Cao, W. (2011). Reduction of Escherichia coli O157:H7 and Salmonella enteritidis on mung bean seeds and sprouts by slightly acidic electrolyzed water. Food Control, 22, 792-796.
  • Zhou, Y., Zheng, J., Li, Y., Xu, D.P., Li, S., Chen, Y.M., Li, H.B. (2016). Natural polyphenols for prevention and treatment of cancer. Nutrients, 8(8): 515, DOI: 10.3390/nu8080515
  • Zou, L., Tan, W.K., Du, Y., Lee, H.W., Liang, X., Lei, J., ... and Ong, C.N. (2021). Nutritional metabolites in Brassica rapa subsp. chinensis var. parachinensis (choy sum) at three different growth stages: Microgreen, seedling and adult plant. Food Chemistry, 357, 129535.
There are 120 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Sefa Işık 0000-0002-1480-7230

Hasan Işık 0000-0002-1783-9019

Zeynep Aytemiş 0000-0002-2989-8788

Senem Guner 0000-0002-6697-5535

Aziz Aksoy 0000-0002-9683-6691

Bülent Çetin 0000-0002-4679-2555

Zeynal Topalcengiz 0000-0002-2113-7319

Project Number FDK-2021-9918
Publication Date August 30, 2022
Published in Issue Year 2022 Volume: 47 Issue: 4

Cite

APA Işık, S., Işık, H., Aytemiş, Z., Guner, S., et al. (2022). MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ. Gıda, 47(4), 630-649. https://doi.org/10.15237/gida.GD22041
AMA Işık S, Işık H, Aytemiş Z, Guner S, Aksoy A, Çetin B, Topalcengiz Z. MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ. The Journal of Food. August 2022;47(4):630-649. doi:10.15237/gida.GD22041
Chicago Işık, Sefa, Hasan Işık, Zeynep Aytemiş, Senem Guner, Aziz Aksoy, Bülent Çetin, and Zeynal Topalcengiz. “MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ”. Gıda 47, no. 4 (August 2022): 630-49. https://doi.org/10.15237/gida.GD22041.
EndNote Işık S, Işık H, Aytemiş Z, Guner S, Aksoy A, Çetin B, Topalcengiz Z (August 1, 2022) MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ. Gıda 47 4 630–649.
IEEE S. Işık, H. Işık, Z. Aytemiş, S. Guner, A. Aksoy, B. Çetin, and Z. Topalcengiz, “MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ”, The Journal of Food, vol. 47, no. 4, pp. 630–649, 2022, doi: 10.15237/gida.GD22041.
ISNAD Işık, Sefa et al. “MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ”. Gıda 47/4 (August 2022), 630-649. https://doi.org/10.15237/gida.GD22041.
JAMA Işık S, Işık H, Aytemiş Z, Guner S, Aksoy A, Çetin B, Topalcengiz Z. MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ. The Journal of Food. 2022;47:630–649.
MLA Işık, Sefa et al. “MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ”. Gıda, vol. 47, no. 4, 2022, pp. 630-49, doi:10.15237/gida.GD22041.
Vancouver Işık S, Işık H, Aytemiş Z, Guner S, Aksoy A, Çetin B, Topalcengiz Z. MİKROYEŞİLLİKLER: BESİNSEL İÇERİĞİ, SAĞLIK ÜZERİNE ETKİSİ, ÜRETİMİ VE GIDA GÜVENLİĞİ. The Journal of Food. 2022;47(4):630-49.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/