Research Article
BibTex RIS Cite

BIOACCESSIBILITY OF POLYPHENOLS FROM CHESTNUT PEEL AND THEIR USE IN NOODLE FORMULATION

Year 2022, Volume: 47 Issue: 5, 754 - 764, 30.10.2022
https://doi.org/10.15237/gida.GD22052

Abstract

In this study, total polyphenol (TP) content, individual phenolics, antioxidant capacity (AC) and in-vitro digestion of antioxidants and polyphenols of the extract obtained from chestnut peel with water were investigated. In addition, the potential use of chestnut peel extract in noodle production was investigated. The results showed that gallic and ellagic acids were determined by HPLC; gallic acid content (33.55 mg/g DM) of chestnut peel was found higher than ellagic acid (12.70 mg/g DM). TP and AC of chestnut peel were 172.67 mg gallic acid equivalent (GAE)/g dry matter (DM) and 174319.64 mmol ascorbic acid equivalent (AAE)/100 g DM, respectively. The highest bioaccessibility of peel polyphenols was observed after the gastric stage. The lowest AC in the peel extract was detected after the intestinal stage. The addition of the peel extract (1.0%) to the noodle dough increased the TP (89.36%) and AC (102.66%) of the final product compared to the noodle without the peel extract (control). Therefore, this study showed that chestnut peel, as an important source of polyphenols, may be useful for food enrichment.

References

  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/j.foodchem.2014.05.103
  • Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., Gerbi, V., Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT - Food Science and Technology, 63(2), 1145–1154. https://doi.org/10.1016/j.lwt.2015.03.113
  • Bouayed, J., Deußer, H., Hoffmann, L., Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466–1472. https://doi.org/10.1016/j.foodchem.2011.10.030
  • Cacciola, N. A., Squillaci, G., D’Apolito, M., Petillo, O., Veraldi, F., Cara, F. La, Peluso, G., Margarucci, S., Morana, A. (2019). Castanea sativa Mill. shells aqueous extract exhibits anticancer properties inducing cytotoxic and pro-apoptotic effects. Molecules, 24(18), 1–12. https://doi.org/10.3390/molecules24183401
  • Collins, J. L., Pangloli, P. (1997). Chemical, physical and sensory attributes of noodles with added sweet potato and soy flour. Journal of Food Science, 62(3), 622–625. https://doi.org/10.1111/j.1365-2621.1997.tb04446.x
  • Fawole, O. A., Opara, U. L. (2016). Stability of total phenolic concentration and antioxidant capacity of extracts from pomegranate co-products subjected to in vitro digestion. BMC Complementary and Alternative Medicine, 16(1), 1–10. https://doi.org/10.1186/s12906-016-1343-2
  • Fernández-Agulló, A., Freire, M. S., Antorrena, G., Pereira, J. A., González-Álvarez, J. (2014). Effect of the Extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) bur and shell. Separation Science and Technology (Philadelphia), 49(2), 267–277. https://doi.org/10.1080/01496395.2013.838264
  • Figueroa, F., Marhuenda, J., Zafrilla, P., Martínez-Cachá, A., Mulero, J., Cerdá, B. (2016). Total phenolics content, bioavailability and antioxidant capacity of 10 different genotypes of walnut (Juglans regia L.). Journal of Food and Nutrition Research, 55(3), 229–236.
  • Gìltekin-Özgìven, M., Berktaş, I., Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559–565. https://doi.org/10.1016/j.lwt.2016.04.065
  • Gullon, B., Pintado, M. E., Fernández-López, J., Pérez-Álvarez, J. A., Viuda-Martos, M. (2015). In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. Journal of Functional Foods, 19, 617–628. https://doi.org/10.1016/j.jff.2015.09.056
  • Ham, J. S., Kim, H. Y., Lim, S. T. (2015). Antioxidant and deodorizing activities of phenolic components in chestnut inner shell extracts. Industrial Crops and Products, 73, 99–105. https://doi.org/10.1016/j.indcrop.2015.04.017
  • ISO 14502-1:2005. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. 8p. International Standard.
  • Jung, B. S., Lee, N. K., Na, D. S., Yu, H. H., Paik, H. D. (2016). Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents. Journal of the Science of Food and Agriculture, 96(6), 2097–2102. https://doi.org/10.1002/jsfa.7324
  • Kazemi, M., Karim, R., Mirhosseini, H., Hamid, A. A., Tamnak, S. (2017). Processing of parboiled wheat noodles fortified with pulsed ultrasound pomegranate (Punica granatum L. var. Malas) peel extract. Food and Bioprocess Technology, 10(2), 379–393. https://doi.org/10.1007/s11947-016-1825-8
  • Lee, N. K., Jung, B. S., Na, D. S., Yu, H. H., Kim, J. S., Paik, H. D. (2016). The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT - Food Science and Technology, 65, 746–750. https://doi.org/10.1016/j.lwt.2015.09.004
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., ... Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j
  • Obiang-Obounou, B. W., Ryu, G. H. (2013). The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts. Food Chemistry, 141(4), 4166–4170. https://doi.org/10.1016/j.foodchem.2013.06.129
  • Parada, J., Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72(2), 21–32. https://doi.org/10.1111/j.1750-3841.2007.00274.x
  • Pasqualone, A., Punzi, R., Trani, A., Summo, C., Paradiso, V. M., Caponio, F., Gambacorta, G. (2017). Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. International Journal of Food Science and Technology, 52(9), 2078–2087. https://doi.org/10.1111/ijfs.13486
  • Pinto, J., Spínola, V., Llorent-Martínez, E. J., Fernández-de Córdova, M. L., Molina-García, L., Castilho, P. C. (2017). Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International, 100, 404–410. https://doi.org/10.1016/j.foodres.2017.03.044
  • Punzi, R., Paradiso, A., Fasciano, C., Trani, A., Faccia, M., De Pinto, M. C., Gambacorta, G. (2014). Phenols and antioxidant activity in vitro and in vivo of aqueous extracts obtained by ultrasound-assisted extraction from artichoke by-products. Natural Product Communications, 9(9), 1315–1318. https://doi.org/10.1177/1934578x1400900924
  • Ranjha, M. M. A. N., Amjad, S., Ashraf, S., Khawar, L., Safdar, M. N., Jabbar, S., Nadeem, M., Mahmood, S., Murtaza, M. A. (2020). Extraction of polyphenols from apple and pomegranate peels employing different extraction techniques for the development of functional date bars. International Journal of Fruit Science, 20(S3), 1201–1221. https://doi.org/10.1080/15538362.2020.1782804
  • Rashidinejad, A., Birch, E. J., Everett, D. W. (2016). The behaviour of green tea catechins in a full-fat milk system under conditions mimicking the cheesemaking process. International Journal of Food Sciences and Nutrition, 67(6), 624–631. https://doi.org/10.1080/09637486.2016.1195797
  • Sorice, A., Siano, F., Capone, F., Guerriero, E., Picariello, G., Budillon, A., Ciliberto, G., Paolucci, M., Costantini, S., Volpe, M. G. (2016). Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules, 21(10), 1–16. https://doi.org/10.3390/molecules21101411
  • Stevigny, C., Rolle, L., Valentini, N., Zeppa, G. (2007). Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. Journal of the Science of Food and Agriculture, 87, 2817–2822. https://doi.org/10.1002/jsfa Taş, N. G., Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43, 203–208. https://doi.org/10.1016/j.jfca.2015.07.003
  • Tsujita, T., Yamada, M., Takaku, T., Shintani, T., Teramoto, K., Sato, T. (2011). Purification and characterization of polyphenols from chestnut astringent skin. Journal of Agricultural and Food Chemistry, 59(16), 8646–8654. https://doi.org/10.1021/jf201679q
  • Tu, F., Xie, C., Li, H., Lei, S., Li, J., Huang, X., Yang, F. (2021). Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chemistry, 363, 130277.https://doi.org/10.1016/j.foodchem.2021.130277
  • Türkmen Erol, N., Sari, F., Çalikoǧlu, E., Velioǧlu, Y. S. (2009). Green and roasted mate: Phenolic profile and antioxidant activity. Turkish Journal of Agriculture and Forestry, 33(4), 353–362. https://doi.org/10.3906/tar-0901-4
  • Turkmen, N., Sari, F., Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713–718. https://doi.org/10.1016/j.foodchem.2004.12.038
  • Vázquez, G., Fernández-Agulló, A., Gómez-Castro, C., Freire, M. S., Antorrena, G., González-Álvarez, J. (2012). Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Industrial Crops and Products, 35(1), 126–134. https://doi.org/10.1016/j.indcrop.2011.06.022
  • Vekiari, S. A., Gordon, M. H., García-Macías, P., Labrinea, H. (2008). Extraction and determination of ellagic acid content in chestnut bark and fruit. Food Chemistry, 110(4), 1007–1011. https://doi.org/10.1016/j.foodchem.2008.02.005
  • Vella, F. M., De Masi, L., Calandrelli, R., Morana, A., Laratta, B. (2019). Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds. European Food Research and Technology, 245(12), 2679–2686. https://doi.org/10.1007/s00217-019-03379-w
  • Vella, F. M., Laratta, B., La Cara, F., Morana, A. (2018). Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Natural Product Research, 32(9), 1022–1032. https://doi.org/10.1080/14786419.2017.1378199
  • Wang, J., Fang, X. M., Mujumdar, A. S., Qian, J. Y., Zhang, Q., Yang, X. H., Liu, Y. H., Gao, Z. J., Xiao, H. W. (2017). Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chemistry, 220, 145–152. https://doi.org/10.1016/j.foodchem.2016.09.200
  • Xiong, J., Chan, Y. H., Rathinasabapathy, T., Grace, M. H., Komarnytsky, S., Lila, M. A. (2020). Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chemistry, 331(March), 127279. https://doi.org/10.1016/j.foodchem.2020.127279
  • Youn, U. Y., Shon, M. S., Kim, G. N., Katagiri, R., Harata, K., Ishida, Y., Lee, S. C. (2016). Antioxidant and anti-adipogenic activities of chestnut (Castanea crenata) byproducts. Food Science and Biotechnology, 25(4), 1169–1174. https://doi.org/10.1007/s10068-016-0186-4
  • Zardo, I., de Espíndola Sobczyk, A., Marczak, L. D. F., Sarkis, J. (2019). Optimization of ultrasound assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste and Biomass Valorization, 10(1), 33–44. https://doi.org/10.1007/s12649-017-0038-3
  • Zhan, G., Pan, L. Q., Mao, S. B., Zhang, W., Wei, Y. Y., Tu, K. (2014). Study on antibacterial properties and major bioactive constituents of Chinese water chestnut (Eleocharis dulcis) peels extracts/fractions. European Food Research and Technology, 238(5), 789–796. https://doi.org/10.1007/s00217-013-2151-2

KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI

Year 2022, Volume: 47 Issue: 5, 754 - 764, 30.10.2022
https://doi.org/10.15237/gida.GD22052

Abstract

Bu çalışmada, atık kestane kabuğundan su ile elde edilen ekstraktın, toplam polifenol (TP) miktarı, bireysel fenolik içeriği ve antioksidan kapasitesi (AK) ile antioksidanların ve polifenollerin in-vitro biyoerişilebilirliği incelenmiştir. Ayrıca, kestane kabuğu ekstraktının erişte üretimindeki potansiyel kullanımı da araştırılmıştır. Yapılan analizler sonucunda kestane kabuğunda HPLC ile gallik asit ve ellajik asit tespit edilmiş; gallik asit miktarı (33.55 mg/g KM), ellajik aside (12.70 mg/g KM) göre daha yüksek bulunmuştur. Kabukların TP içeriği ve AK’sı sırasıyla 172.67 mg gallik asit eşdeğeri/g KM ve 174319.64 mmol askorbik asit eşdeğeri /100 g KM olarak saptanmıştır. Kabuk polifenollerinin biyoerişilebilirliği en fazla gastrik aşama sonrasında gözlenmiş, en düşük AK ise intestinal aşama sonrasında tespit edilmiştir. Erişte hamuruna, kabuk ekstraktının %1.0 oranında ilave edilmesi, son ürünün TP ve AK’ sını, kabuk ekstraktı içermeyen erişteye (kontrol) göre sırasıyla %89.36 ve %102.66 oranında artırmıştır. Bu çalışma, kestane kabuğunun önemli bir polifenol kaynağı olarak, gıdaların zenginleştirilmesi amacıyla kullanılabileceğini göstermiştir.

References

  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/j.foodchem.2014.05.103
  • Bertolino, M., Belviso, S., Dal Bello, B., Ghirardello, D., Giordano, M., Rolle, L., Gerbi, V., Zeppa, G. (2015). Influence of the addition of different hazelnut skins on the physicochemical, antioxidant, polyphenol and sensory properties of yogurt. LWT - Food Science and Technology, 63(2), 1145–1154. https://doi.org/10.1016/j.lwt.2015.03.113
  • Bouayed, J., Deußer, H., Hoffmann, L., Bohn, T. (2012). Bioaccessible and dialysable polyphenols in selected apple varieties following in vitro digestion vs. their native patterns. Food Chemistry, 131(4), 1466–1472. https://doi.org/10.1016/j.foodchem.2011.10.030
  • Cacciola, N. A., Squillaci, G., D’Apolito, M., Petillo, O., Veraldi, F., Cara, F. La, Peluso, G., Margarucci, S., Morana, A. (2019). Castanea sativa Mill. shells aqueous extract exhibits anticancer properties inducing cytotoxic and pro-apoptotic effects. Molecules, 24(18), 1–12. https://doi.org/10.3390/molecules24183401
  • Collins, J. L., Pangloli, P. (1997). Chemical, physical and sensory attributes of noodles with added sweet potato and soy flour. Journal of Food Science, 62(3), 622–625. https://doi.org/10.1111/j.1365-2621.1997.tb04446.x
  • Fawole, O. A., Opara, U. L. (2016). Stability of total phenolic concentration and antioxidant capacity of extracts from pomegranate co-products subjected to in vitro digestion. BMC Complementary and Alternative Medicine, 16(1), 1–10. https://doi.org/10.1186/s12906-016-1343-2
  • Fernández-Agulló, A., Freire, M. S., Antorrena, G., Pereira, J. A., González-Álvarez, J. (2014). Effect of the Extraction technique and operational conditions on the recovery of bioactive compounds from chestnut (Castanea sativa) bur and shell. Separation Science and Technology (Philadelphia), 49(2), 267–277. https://doi.org/10.1080/01496395.2013.838264
  • Figueroa, F., Marhuenda, J., Zafrilla, P., Martínez-Cachá, A., Mulero, J., Cerdá, B. (2016). Total phenolics content, bioavailability and antioxidant capacity of 10 different genotypes of walnut (Juglans regia L.). Journal of Food and Nutrition Research, 55(3), 229–236.
  • Gìltekin-Özgìven, M., Berktaş, I., Özçelik, B. (2016). Change in stability of procyanidins, antioxidant capacity and in-vitro bioaccessibility during processing of cocoa powder from cocoa beans. LWT - Food Science and Technology, 72, 559–565. https://doi.org/10.1016/j.lwt.2016.04.065
  • Gullon, B., Pintado, M. E., Fernández-López, J., Pérez-Álvarez, J. A., Viuda-Martos, M. (2015). In vitro gastrointestinal digestion of pomegranate peel (Punica granatum) flour obtained from co-products: Changes in the antioxidant potential and bioactive compounds stability. Journal of Functional Foods, 19, 617–628. https://doi.org/10.1016/j.jff.2015.09.056
  • Ham, J. S., Kim, H. Y., Lim, S. T. (2015). Antioxidant and deodorizing activities of phenolic components in chestnut inner shell extracts. Industrial Crops and Products, 73, 99–105. https://doi.org/10.1016/j.indcrop.2015.04.017
  • ISO 14502-1:2005. Determination of substances characteristic of green and black tea. Part 1: Content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. 8p. International Standard.
  • Jung, B. S., Lee, N. K., Na, D. S., Yu, H. H., Paik, H. D. (2016). Comparative analysis of the antioxidant and anticancer activities of chestnut inner shell extracts prepared with various solvents. Journal of the Science of Food and Agriculture, 96(6), 2097–2102. https://doi.org/10.1002/jsfa.7324
  • Kazemi, M., Karim, R., Mirhosseini, H., Hamid, A. A., Tamnak, S. (2017). Processing of parboiled wheat noodles fortified with pulsed ultrasound pomegranate (Punica granatum L. var. Malas) peel extract. Food and Bioprocess Technology, 10(2), 379–393. https://doi.org/10.1007/s11947-016-1825-8
  • Lee, N. K., Jung, B. S., Na, D. S., Yu, H. H., Kim, J. S., Paik, H. D. (2016). The impact of antimicrobial effect of chestnut inner shell extracts against Campylobacter jejuni in chicken meat. LWT - Food Science and Technology, 65, 746–750. https://doi.org/10.1016/j.lwt.2015.09.004
  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., MacIerzanka, A., MacKie, A., ... Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food-an international consensus. Food and Function, 5(6), 1113–1124. https://doi.org/10.1039/c3fo60702j
  • Obiang-Obounou, B. W., Ryu, G. H. (2013). The effect of feed moisture and temperature on tannin content, antioxidant and antimicrobial activities of extruded chestnuts. Food Chemistry, 141(4), 4166–4170. https://doi.org/10.1016/j.foodchem.2013.06.129
  • Parada, J., Aguilera, J. M. (2007). Food microstructure affects the bioavailability of several nutrients. Journal of Food Science, 72(2), 21–32. https://doi.org/10.1111/j.1750-3841.2007.00274.x
  • Pasqualone, A., Punzi, R., Trani, A., Summo, C., Paradiso, V. M., Caponio, F., Gambacorta, G. (2017). Enrichment of fresh pasta with antioxidant extracts obtained from artichoke canning by-products by ultrasound-assisted technology and quality characterisation of the end product. International Journal of Food Science and Technology, 52(9), 2078–2087. https://doi.org/10.1111/ijfs.13486
  • Pinto, J., Spínola, V., Llorent-Martínez, E. J., Fernández-de Córdova, M. L., Molina-García, L., Castilho, P. C. (2017). Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International, 100, 404–410. https://doi.org/10.1016/j.foodres.2017.03.044
  • Punzi, R., Paradiso, A., Fasciano, C., Trani, A., Faccia, M., De Pinto, M. C., Gambacorta, G. (2014). Phenols and antioxidant activity in vitro and in vivo of aqueous extracts obtained by ultrasound-assisted extraction from artichoke by-products. Natural Product Communications, 9(9), 1315–1318. https://doi.org/10.1177/1934578x1400900924
  • Ranjha, M. M. A. N., Amjad, S., Ashraf, S., Khawar, L., Safdar, M. N., Jabbar, S., Nadeem, M., Mahmood, S., Murtaza, M. A. (2020). Extraction of polyphenols from apple and pomegranate peels employing different extraction techniques for the development of functional date bars. International Journal of Fruit Science, 20(S3), 1201–1221. https://doi.org/10.1080/15538362.2020.1782804
  • Rashidinejad, A., Birch, E. J., Everett, D. W. (2016). The behaviour of green tea catechins in a full-fat milk system under conditions mimicking the cheesemaking process. International Journal of Food Sciences and Nutrition, 67(6), 624–631. https://doi.org/10.1080/09637486.2016.1195797
  • Sorice, A., Siano, F., Capone, F., Guerriero, E., Picariello, G., Budillon, A., Ciliberto, G., Paolucci, M., Costantini, S., Volpe, M. G. (2016). Potential anticancer effects of polyphenols from chestnut shell extracts: Modulation of cell growth, and cytokinomic and metabolomic profiles. Molecules, 21(10), 1–16. https://doi.org/10.3390/molecules21101411
  • Stevigny, C., Rolle, L., Valentini, N., Zeppa, G. (2007). Optimization of extraction of phenolic content from hazelnut shell using response surface methodology. Journal of the Science of Food and Agriculture, 87, 2817–2822. https://doi.org/10.1002/jsfa Taş, N. G., Gökmen, V. (2015). Bioactive compounds in different hazelnut varieties and their skins. Journal of Food Composition and Analysis, 43, 203–208. https://doi.org/10.1016/j.jfca.2015.07.003
  • Tsujita, T., Yamada, M., Takaku, T., Shintani, T., Teramoto, K., Sato, T. (2011). Purification and characterization of polyphenols from chestnut astringent skin. Journal of Agricultural and Food Chemistry, 59(16), 8646–8654. https://doi.org/10.1021/jf201679q
  • Tu, F., Xie, C., Li, H., Lei, S., Li, J., Huang, X., Yang, F. (2021). Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chemistry, 363, 130277.https://doi.org/10.1016/j.foodchem.2021.130277
  • Türkmen Erol, N., Sari, F., Çalikoǧlu, E., Velioǧlu, Y. S. (2009). Green and roasted mate: Phenolic profile and antioxidant activity. Turkish Journal of Agriculture and Forestry, 33(4), 353–362. https://doi.org/10.3906/tar-0901-4
  • Turkmen, N., Sari, F., Velioglu, Y. S. (2005). The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chemistry, 93(4), 713–718. https://doi.org/10.1016/j.foodchem.2004.12.038
  • Vázquez, G., Fernández-Agulló, A., Gómez-Castro, C., Freire, M. S., Antorrena, G., González-Álvarez, J. (2012). Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Industrial Crops and Products, 35(1), 126–134. https://doi.org/10.1016/j.indcrop.2011.06.022
  • Vekiari, S. A., Gordon, M. H., García-Macías, P., Labrinea, H. (2008). Extraction and determination of ellagic acid content in chestnut bark and fruit. Food Chemistry, 110(4), 1007–1011. https://doi.org/10.1016/j.foodchem.2008.02.005
  • Vella, F. M., De Masi, L., Calandrelli, R., Morana, A., Laratta, B. (2019). Valorization of the agro-forestry wastes from Italian chestnut cultivars for the recovery of bioactive compounds. European Food Research and Technology, 245(12), 2679–2686. https://doi.org/10.1007/s00217-019-03379-w
  • Vella, F. M., Laratta, B., La Cara, F., Morana, A. (2018). Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Natural Product Research, 32(9), 1022–1032. https://doi.org/10.1080/14786419.2017.1378199
  • Wang, J., Fang, X. M., Mujumdar, A. S., Qian, J. Y., Zhang, Q., Yang, X. H., Liu, Y. H., Gao, Z. J., Xiao, H. W. (2017). Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chemistry, 220, 145–152. https://doi.org/10.1016/j.foodchem.2016.09.200
  • Xiong, J., Chan, Y. H., Rathinasabapathy, T., Grace, M. H., Komarnytsky, S., Lila, M. A. (2020). Enhanced stability of berry pomace polyphenols delivered in protein-polyphenol aggregate particles to an in vitro gastrointestinal digestion model. Food Chemistry, 331(March), 127279. https://doi.org/10.1016/j.foodchem.2020.127279
  • Youn, U. Y., Shon, M. S., Kim, G. N., Katagiri, R., Harata, K., Ishida, Y., Lee, S. C. (2016). Antioxidant and anti-adipogenic activities of chestnut (Castanea crenata) byproducts. Food Science and Biotechnology, 25(4), 1169–1174. https://doi.org/10.1007/s10068-016-0186-4
  • Zardo, I., de Espíndola Sobczyk, A., Marczak, L. D. F., Sarkis, J. (2019). Optimization of ultrasound assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste and Biomass Valorization, 10(1), 33–44. https://doi.org/10.1007/s12649-017-0038-3
  • Zhan, G., Pan, L. Q., Mao, S. B., Zhang, W., Wei, Y. Y., Tu, K. (2014). Study on antibacterial properties and major bioactive constituents of Chinese water chestnut (Eleocharis dulcis) peels extracts/fractions. European Food Research and Technology, 238(5), 789–796. https://doi.org/10.1007/s00217-013-2151-2
There are 38 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Articles
Authors

Nihal Türkmen Erol 0000-0002-5682-0177

Publication Date October 30, 2022
Published in Issue Year 2022 Volume: 47 Issue: 5

Cite

APA Türkmen Erol, N. (2022). KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI. Gıda, 47(5), 754-764. https://doi.org/10.15237/gida.GD22052
AMA Türkmen Erol N. KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI. The Journal of Food. October 2022;47(5):754-764. doi:10.15237/gida.GD22052
Chicago Türkmen Erol, Nihal. “KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI”. Gıda 47, no. 5 (October 2022): 754-64. https://doi.org/10.15237/gida.GD22052.
EndNote Türkmen Erol N (October 1, 2022) KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI. Gıda 47 5 754–764.
IEEE N. Türkmen Erol, “KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI”, The Journal of Food, vol. 47, no. 5, pp. 754–764, 2022, doi: 10.15237/gida.GD22052.
ISNAD Türkmen Erol, Nihal. “KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI”. Gıda 47/5 (October 2022), 754-764. https://doi.org/10.15237/gida.GD22052.
JAMA Türkmen Erol N. KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI. The Journal of Food. 2022;47:754–764.
MLA Türkmen Erol, Nihal. “KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI”. Gıda, vol. 47, no. 5, 2022, pp. 754-6, doi:10.15237/gida.GD22052.
Vancouver Türkmen Erol N. KESTANE KABUĞUNDAN ELDE EDİLEN POLİFENOLLERİN BİYOERİŞİLEBİLİRLİĞİ VE ERİŞTE FORMÜLASYONUNDA KULLANIMI. The Journal of Food. 2022;47(5):754-6.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/