DETERMINATION OF THE EFFECTS OF DIFFERENT DRYING TECHNIQUES ON HAZELNUT OLEOSOMES
Year 2024,
Volume: 49 Issue: 6, 1138 - 1147
Hakan Erinç
,
Tuğçe Erkayıran
Abstract
In this study, oleosomes obtained from raw hazelnuts were characterized for their fat-protein contents and creaming stability (pH 2-11). According to the analysis results, oleosomes obtained from hazelnuts had a fat content of 87.45%±0.36 and a protein content of 1.65%±0.06. On the other hand, it was found that they exhibited resistance to aggregation/creaming at pH 7, but were unstable at higher and lower pH values. In the second phase of the study, oleosomes were mixed with maltodextrin and then dried using two different methods (spray-drying and freeze-drying). Digestibility and oxidative stability analyses conducted on the samples revealed that the digestibility of the dried samples was superior to that of the control sample. Freeze-dried oleosomes exhibited oxidative stability results similar to the control sample, while it was determined that samples dried by spray-drying underwent significant oxidation due to the temperature effect.
Project Number
TGT 2020/8-BAGEP
References
- Abdullah, Weiss, J., Zhang, H. (2020). Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends in Food Science & Technology, 106, 322–332. https://doi.org/10.1016/J.TIFS.2020.10.029
- AOAC. (2002). Official Methods of Analysis of AOAC International. In G. W. Latimer (Ed.), AOAC International (21st ed., Issue 2019). AOAC International, Rockville, Md. https://www.worldcat.org/title/1194484062
- AOCS. (1998). Official methods and recommended practices of the AOCS (D. Firestone (ed.); 5th ed.). American Oil Chemists’ Society.
- Bakry, A.M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M.Y., Mousa, A., Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews In Food Science And Food Safety. 15:143–82. doi: 10.1111/1541- 4337.12179
- Capuano, E., Pellegrini, N., Ntone, E., Nikiforidis, C. V. (2018). In vitro lipid digestion in raw and roasted hazelnut particles and oil bodies. Food and Function, 9(4), 2508–2516. https://doi.org/10.1039/c8fo00389k
- Dave, A. C., Ye, A., Singh, H. (2019). Structural and interfacial characteristics of oil bodies in coconuts (Cocos nucifera L.). Food Chemistry, 276, 129–139. https://doi.org/10.1016/ J.FOODCHEM.2018.09.125
- Fongin, S., Kawai, K., Harnkarnsujarit, N., Hagura, Y. (2017). Effects of water and maltodextrin on the glass transition temperature of freeze-dried mango pulp and an empirical model to predict plasticizing effect of water on dried fruits. Journal of Food Engineering, 210:91–7. doi: 10.1016/j.jfoodeng.2017.04.025
- Gallier, S., Gordon, K. C., Singh, H. (2012). Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chemistry, 132(4), 1996–2006. https://doi.org/10.1016/J.FOODCHEM.2011.12.038
- Hartman, L., Lago, R. C. A. (1973). Rapid preparation of fatty acid methyl esters from lipids - PubMed. Laboratory Practice, 22, 475–476. https://pubmed.ncbi.nlm.nih.gov/4727126/
- Iwanaga, D., Gray, D. A., Fisk, I. D., Decker, E. A., Weiss, J., McClements, D. J. (2007). Extraction and characterization of oil bodies from soy beans: A natural source of pre-emulsified soybean oil. Journal of Agricultural and Food Chemistry, 55(21), 8711–8716. https://doi.org/ 10.1021/JF071008W
- Kara, H.H., Araiza-Calahorra, A., Rigby, N.M., Sarkar, A. (2024). Flaxseed oleosomes: Responsiveness to physicochemical stresses, tribological shear and storage. Food Chemistry, 431, 137160. https://doi.org/10.1016/ J.FOODCHEM.2023.137160
- Korma, S.A., Wei, W., Ali, A.H., Abed, S.M., Zheng, L., Jin Q., Wang, X. (2019). Spray-dried novel structured lipids enriched with medium-and long-chain triacylglycerols encapsulated with different wall materials: characterization and stability. Food Research International, 116:538–47. doi: 10.1016/j.foodres.2018.08.071
- Li, Z., Sun, B., Zhu, Y., Liu, L., Huang, Y., Lu, M., Zhu, X., Gao, Y. (2022). Effect of maltodextrin on the oxidative stability of ultrasonically induced soybean oil bodies microcapsules. Frontiers In Nutrition, 9:1071462. doi:10.3389/ fnut.2022.1071462.
- Loi, C.C., Eyres, G.T., Silcock, P., Birch, E.J. (2020). Preparation and characterisation of a novel emulsifier system based on glycerol monooleate by spray-drying. Journal of Food Engineering, 285:110100. doi: 10.1016/ j.jfoodeng.2020.110100
- Lopez, C., Novales, B., Rabesona, H., Weber, M., Chardot, T., Anton, M. (2021). Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Research International, 150, 110759. https://doi.org/10.1016/J.FOODRES.2021.110759
- Mantzouridou, F.T., Naziri, E., Kyriakidou, A., Paraskevopoulou, A., Tsimidou, M.Z., Kiosseoglou, V. (2019). Oil bodies from dry maize germ as an effective replacer of cow milk fat globules in yogurt-like product formulation. LWT, 105, 48–56. https://doi.org/10.1016/ J.LWT.2019.01.068
- Matsakidou, A., Tsimidou, M. Z., Kiosseoglou, V. (2019). Storage behavior of caseinate-based films incorporating maize germ oil bodies. Food Research International, 116, 1031–1040. https://doi.org/ 10.1016/J.FOODRES.2018.09.042
- Maurer, S., Ghebremedhin, M., Zielbauer, B.I., Knorr, D., Vilgis, T.A. (2016). Microencapsulation of soybean oil by spray drying using oleosomes. Journal of Physics D: Applied Physics, 49:054001. doi: 10.1088/0022-3727/49/5/054001
- Mohona, M., Pradyuman, K. (2022). Microencapsulation of fenugreek seed oil and oil load effect on maltodextrin and fenugreek seed mucilage as wall materials by spray drying. Journal of Food Processing and Preservation, 46:16294. doi: 10.1111/JFPP.16294
- Nikiforidis, C. V., Kiosseoglou, V. (2009). Aqueous extraction of oil bodies from maize germ (Zea mays) and characterization of the resulting natural oil-in-water emulsion. Journal of Agricultural and Food Chemistry, 57(12), 5591–5596. https://doi.org/10.1021/JF900771V
- Nikiforidis, C.V. (2019). Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science, 274, 102039. https://doi.org/ 10.1016/J.CIS.2019.102039
- Nikiforidis, C.V., Matsakidou, A., Kiosseoglou, V. (2014). Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Advances, 4(48), 25067–25078. https://doi.org/10.1039/ C4RA00903G
- Ntone, E., Yang, J., Meinders, M. B. J., Bitter, J. H., Sagis, L. M. C., Nikiforidis, C. V. (2023). The emulsifying ability of oleosomes and their interfacial molecules. Colloids and Surfaces B: Biointerfaces, 229, 113476. https://doi.org/ 10.1016/J.COLSURFB.2023.113476
- Özgüven, M. (2014). Functional chocolate development: enrichment of dark chocolate with nano-liposome encapsulated antioxidants, and/or pro- and pre-biotics, bioavailability studies, Ph. D. Thesis, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye.
- Pereira, W.F.S., de Figueiredo Furtado, G., Feltre, G., Hubinger, M.D. (2022). Oleosomes from Buriti (Mauritia flexuosa L. f.): Extraction, characterization and stability study. Innovative Food Science & Emerging Technologies, 82, 103183. https://doi.org/10.1016/J.IFSET.2022.103183
- Qi, B., Ding, J., Wang, Z., Li, Y., Ma, C., Chen, F., Sui, X., Jiang, L. (2017). Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH. Food Research International, 100(May), 551–557. https://doi.org/10.1016/ j.foodres.2017.07.053
- Romero-Guzmán, M. J., Jung, L., Kyriakopoulou, K., Boom, R. M., Nikiforidis, C. V. (2020). Efficient single-step rapeseed oleosome extraction using twin-screw press. Journal of Food Engineering, 276, 109890. https://doi.org/ 10.1016/J.JFOODENG.2019.109890
- Shakerardekani, A., Karim, R., Vaseli, N. (2013). The effect of processing variables on the quality and acceptability of pistachio milk. Journal of Food Processing and Preservation, 37(5), 541–545. https://doi.org/10.1111/J.1745-4549.2012.00676.X
- Van Aken, G.A., Blijdenstein, T.B.J., Hotrum, N.E. (2003). Colloidal destabilisation mechanisms in protein-stabilised emulsions. Current Opinion in Colloid & Interface Science, 8(4–5), 371–379. https://doi.org/10.1016/S1359-0294(03)00098-0
- Waschatko, G., Junghans, A., Vilgis, T. A. (2012). Soy milk oleosome behaviour at the air–water interface. Faraday Discussions, 158(0), 157–169. https://doi.org/10.1039/C2FD20036H
- Zaaboul, F., Zhao, Q., Xu, Y., Liu, Y. (2022). Soybean oil bodies: a review on composition, properties, food applications, and future research aspects. Food Hydrocolloids, 124:107296. doi: 10.1016/j.foodhyd.2021.107296
- Zhu, Z., Hu, J., Zhong, Z. (2022). Preparation and characterization of long-term antibacterial and pH-responsive Polylactic acid/Octenyl succinic anhydridechitosan @ tea tree oil microcapsules. International Journal of Biological Macromolecules, 220:1318–28. doi: 10.1016/ j.ijbiomac.2022.09.038
FARKLI KURUTMA TEKNİKLERİNİN FINDIK OLEOZOMLARI ÜZERİNE ETKİLERİNİN BELİRLENMESİ
Year 2024,
Volume: 49 Issue: 6, 1138 - 1147
Hakan Erinç
,
Tuğçe Erkayıran
Abstract
Bu çalışmada, kavrulmamış fındıklardan elde edilen oleozomlar yağ ve protein içerikleri ile kremleşme stabilitesi (pH 2-11) açısından karakterize edilmiştir. Analiz sonuçlarına göre, fındıktan elde edilen oleozomların yağ içeriği %87.45±0.36 ve protein içeriği %1.65±0.06 olarak belirlendi. Ayrıca oleozomların pH 7'de agregasyona/kremleşmeye karşı direnç gösterdikleri ancak daha yüksek ve daha düşük pH değerlerinde kararsız oldukları tespit edilmiştir. Çalışmanın ikinci aşamasında, oleozomlar maltodekstrin ile karıştırıldıktan sonra iki farklı yöntemle (püskürtülerek ve dondurularak) kurutulmuştur. Örnekler üzerinde yapılan sindirilebilirlik ve oksidatif stabilite analizleri, kurutulan örneklerin sindirilebilirlik açısından kontrol örneğinden daha iyi olduğunu göstermiştir. Dondurularak kurutulan oleozomlar, kontrol örneğiyle benzer oksidatif stabilite sonuçları sergilerken, püskürtülerek kurutulan örneklerin sıcaklık etkisiyle önemli ölçüde okside olduğu belirlenmiştir.
Supporting Institution
Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırmalar Projeleri Birimi
Project Number
TGT 2020/8-BAGEP
Thanks
Bu çalışma, Niğde Ömer Halisdemir Üniversitesi Bilimsel Araştırmalar Projeleri Birimi tarafından desteklenmiştir (Proje No: TGT 2020/8-BAGEP
References
- Abdullah, Weiss, J., Zhang, H. (2020). Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends in Food Science & Technology, 106, 322–332. https://doi.org/10.1016/J.TIFS.2020.10.029
- AOAC. (2002). Official Methods of Analysis of AOAC International. In G. W. Latimer (Ed.), AOAC International (21st ed., Issue 2019). AOAC International, Rockville, Md. https://www.worldcat.org/title/1194484062
- AOCS. (1998). Official methods and recommended practices of the AOCS (D. Firestone (ed.); 5th ed.). American Oil Chemists’ Society.
- Bakry, A.M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M.Y., Mousa, A., Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews In Food Science And Food Safety. 15:143–82. doi: 10.1111/1541- 4337.12179
- Capuano, E., Pellegrini, N., Ntone, E., Nikiforidis, C. V. (2018). In vitro lipid digestion in raw and roasted hazelnut particles and oil bodies. Food and Function, 9(4), 2508–2516. https://doi.org/10.1039/c8fo00389k
- Dave, A. C., Ye, A., Singh, H. (2019). Structural and interfacial characteristics of oil bodies in coconuts (Cocos nucifera L.). Food Chemistry, 276, 129–139. https://doi.org/10.1016/ J.FOODCHEM.2018.09.125
- Fongin, S., Kawai, K., Harnkarnsujarit, N., Hagura, Y. (2017). Effects of water and maltodextrin on the glass transition temperature of freeze-dried mango pulp and an empirical model to predict plasticizing effect of water on dried fruits. Journal of Food Engineering, 210:91–7. doi: 10.1016/j.jfoodeng.2017.04.025
- Gallier, S., Gordon, K. C., Singh, H. (2012). Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chemistry, 132(4), 1996–2006. https://doi.org/10.1016/J.FOODCHEM.2011.12.038
- Hartman, L., Lago, R. C. A. (1973). Rapid preparation of fatty acid methyl esters from lipids - PubMed. Laboratory Practice, 22, 475–476. https://pubmed.ncbi.nlm.nih.gov/4727126/
- Iwanaga, D., Gray, D. A., Fisk, I. D., Decker, E. A., Weiss, J., McClements, D. J. (2007). Extraction and characterization of oil bodies from soy beans: A natural source of pre-emulsified soybean oil. Journal of Agricultural and Food Chemistry, 55(21), 8711–8716. https://doi.org/ 10.1021/JF071008W
- Kara, H.H., Araiza-Calahorra, A., Rigby, N.M., Sarkar, A. (2024). Flaxseed oleosomes: Responsiveness to physicochemical stresses, tribological shear and storage. Food Chemistry, 431, 137160. https://doi.org/10.1016/ J.FOODCHEM.2023.137160
- Korma, S.A., Wei, W., Ali, A.H., Abed, S.M., Zheng, L., Jin Q., Wang, X. (2019). Spray-dried novel structured lipids enriched with medium-and long-chain triacylglycerols encapsulated with different wall materials: characterization and stability. Food Research International, 116:538–47. doi: 10.1016/j.foodres.2018.08.071
- Li, Z., Sun, B., Zhu, Y., Liu, L., Huang, Y., Lu, M., Zhu, X., Gao, Y. (2022). Effect of maltodextrin on the oxidative stability of ultrasonically induced soybean oil bodies microcapsules. Frontiers In Nutrition, 9:1071462. doi:10.3389/ fnut.2022.1071462.
- Loi, C.C., Eyres, G.T., Silcock, P., Birch, E.J. (2020). Preparation and characterisation of a novel emulsifier system based on glycerol monooleate by spray-drying. Journal of Food Engineering, 285:110100. doi: 10.1016/ j.jfoodeng.2020.110100
- Lopez, C., Novales, B., Rabesona, H., Weber, M., Chardot, T., Anton, M. (2021). Deciphering the properties of hemp seed oil bodies for food applications: Lipid composition, microstructure, surface properties and physical stability. Food Research International, 150, 110759. https://doi.org/10.1016/J.FOODRES.2021.110759
- Mantzouridou, F.T., Naziri, E., Kyriakidou, A., Paraskevopoulou, A., Tsimidou, M.Z., Kiosseoglou, V. (2019). Oil bodies from dry maize germ as an effective replacer of cow milk fat globules in yogurt-like product formulation. LWT, 105, 48–56. https://doi.org/10.1016/ J.LWT.2019.01.068
- Matsakidou, A., Tsimidou, M. Z., Kiosseoglou, V. (2019). Storage behavior of caseinate-based films incorporating maize germ oil bodies. Food Research International, 116, 1031–1040. https://doi.org/ 10.1016/J.FOODRES.2018.09.042
- Maurer, S., Ghebremedhin, M., Zielbauer, B.I., Knorr, D., Vilgis, T.A. (2016). Microencapsulation of soybean oil by spray drying using oleosomes. Journal of Physics D: Applied Physics, 49:054001. doi: 10.1088/0022-3727/49/5/054001
- Mohona, M., Pradyuman, K. (2022). Microencapsulation of fenugreek seed oil and oil load effect on maltodextrin and fenugreek seed mucilage as wall materials by spray drying. Journal of Food Processing and Preservation, 46:16294. doi: 10.1111/JFPP.16294
- Nikiforidis, C. V., Kiosseoglou, V. (2009). Aqueous extraction of oil bodies from maize germ (Zea mays) and characterization of the resulting natural oil-in-water emulsion. Journal of Agricultural and Food Chemistry, 57(12), 5591–5596. https://doi.org/10.1021/JF900771V
- Nikiforidis, C.V. (2019). Structure and functions of oleosomes (oil bodies). Advances in Colloid and Interface Science, 274, 102039. https://doi.org/ 10.1016/J.CIS.2019.102039
- Nikiforidis, C.V., Matsakidou, A., Kiosseoglou, V. (2014). Composition, properties and potential food applications of natural emulsions and cream materials based on oil bodies. RSC Advances, 4(48), 25067–25078. https://doi.org/10.1039/ C4RA00903G
- Ntone, E., Yang, J., Meinders, M. B. J., Bitter, J. H., Sagis, L. M. C., Nikiforidis, C. V. (2023). The emulsifying ability of oleosomes and their interfacial molecules. Colloids and Surfaces B: Biointerfaces, 229, 113476. https://doi.org/ 10.1016/J.COLSURFB.2023.113476
- Özgüven, M. (2014). Functional chocolate development: enrichment of dark chocolate with nano-liposome encapsulated antioxidants, and/or pro- and pre-biotics, bioavailability studies, Ph. D. Thesis, Fen Bilimleri Enstitüsü, İstanbul Teknik Üniversitesi, İstanbul, Türkiye.
- Pereira, W.F.S., de Figueiredo Furtado, G., Feltre, G., Hubinger, M.D. (2022). Oleosomes from Buriti (Mauritia flexuosa L. f.): Extraction, characterization and stability study. Innovative Food Science & Emerging Technologies, 82, 103183. https://doi.org/10.1016/J.IFSET.2022.103183
- Qi, B., Ding, J., Wang, Z., Li, Y., Ma, C., Chen, F., Sui, X., Jiang, L. (2017). Deciphering the characteristics of soybean oleosome-associated protein in maintaining the stability of oleosomes as affected by pH. Food Research International, 100(May), 551–557. https://doi.org/10.1016/ j.foodres.2017.07.053
- Romero-Guzmán, M. J., Jung, L., Kyriakopoulou, K., Boom, R. M., Nikiforidis, C. V. (2020). Efficient single-step rapeseed oleosome extraction using twin-screw press. Journal of Food Engineering, 276, 109890. https://doi.org/ 10.1016/J.JFOODENG.2019.109890
- Shakerardekani, A., Karim, R., Vaseli, N. (2013). The effect of processing variables on the quality and acceptability of pistachio milk. Journal of Food Processing and Preservation, 37(5), 541–545. https://doi.org/10.1111/J.1745-4549.2012.00676.X
- Van Aken, G.A., Blijdenstein, T.B.J., Hotrum, N.E. (2003). Colloidal destabilisation mechanisms in protein-stabilised emulsions. Current Opinion in Colloid & Interface Science, 8(4–5), 371–379. https://doi.org/10.1016/S1359-0294(03)00098-0
- Waschatko, G., Junghans, A., Vilgis, T. A. (2012). Soy milk oleosome behaviour at the air–water interface. Faraday Discussions, 158(0), 157–169. https://doi.org/10.1039/C2FD20036H
- Zaaboul, F., Zhao, Q., Xu, Y., Liu, Y. (2022). Soybean oil bodies: a review on composition, properties, food applications, and future research aspects. Food Hydrocolloids, 124:107296. doi: 10.1016/j.foodhyd.2021.107296
- Zhu, Z., Hu, J., Zhong, Z. (2022). Preparation and characterization of long-term antibacterial and pH-responsive Polylactic acid/Octenyl succinic anhydridechitosan @ tea tree oil microcapsules. International Journal of Biological Macromolecules, 220:1318–28. doi: 10.1016/ j.ijbiomac.2022.09.038