Unraveling the Unique Fatty Acid Signatures of Blended Butters: A Gas Chromatography Study
Yıl 2025,
Sayı: 33, 32 - 39, 13.02.2025
Erdem Artuvan
,
Salih Aksay
Öz
Objective: This study aimed to analyze the changes in the fatty acid profile of butter obtained by mixing goat butter and cow butter at different ratios (25%, 50%, 75% w/w) using gas chromatography and to identify the key fatty acids that can be used to detect goat butter adulterated with cow butter.
Materials and methods: The purity of the fats used was determined by Real-Time PCR. Fatty acid composition analyses were performed using a Gas Chromatograph (GC) device.
Results and conclusion: The results showed that as the proportion of goat butter increased, the amount of capric acid increased significantly, and the total percentage of unsaturated fatty acids decreased. Capric acid was found to be dominant in goat cheese, while the highest saturated fatty acid content was determined in cow cheese. Additionally, it was found that the trans-fat ratio increased when cow butter was added to goat butter. As a result of the study, it was determined that caproic acid (6:0), caprylic acid (8:0), capric acid (10:0), lauric acid (12:0), myristoleic acid (14:1), linoleic acid (18:2), linolenic acid (18:3), and eicosenoic acid (20:1) content in goat and cow butter mixtures can be used as marker acids.
Proje Numarası
Mersin University Scientific Research Projects Unit project number 2021-1-TP3-4172 and TÜBİTAK project number 123O967
Teşekkür
This study was supported by Mersin University Scientific Research Projects Unit (BAP) with project number 2021-1-TP3-4172 and by The Scientific and Technological Research Council of Turkey (TÜBİTAK) with project number 123O967 under the 1002b urgent support projects..
Kaynakça
- Akgül, F. Y., Ceylan, H. G., & Atasoy, A. F. (2020). Determination of fatty acids profiles and volatile compounds of cows’ and goats’ butters. International Journal of Agriculture Environment and Food Sciences, 4(1), 7-13. doi:https://doi.org/10.31015/jaefs.2020.1.2
- Abdugamitova, A., Serikbayeva, A., Mateyeva, A., Orymbetova, G., Mateyeva, S., Matibaeyva, A., & Toleugazykyzy, A. (2024). Proximate and fatty acid analysis of goat and goat-cow mixed milk cheeses. Potravinarstvo Slovak Journal of Food Sciences, 18, 807-813. doi:https://doi.org/10.5219/2000
- Aro, A., Antoine, J., Pizzoferrato, L., Reykdal, O., & van Poppel, G. (1998). Trans Fatty Acids in Dairy and Meat Products from 14 European Countries: The TRANSFAIR Study. Journal of Food Composition and Analysis, 11, 150-160.
- Artuvan, E., & Aksay, S. (2022). In food safety control overview of using Real-Time PCR. Biotech Studies, 31(2), 53-60.
- Bansal, S., Singh, A., Mangal, M., Mangal, A., & Kumar, S. (2017). Food adulteration: Sources, health risks, and detection methods. Critical Reviews in Food Science and Nutrition, 57(6), 1174-1189.
- Baptista, M., Cunha, J., & Domingues, L. (2021). DNA-based approaches for dairy products authentication: A review and perspectives. Trends in Food Science & Technology, 109, 386-397.
- Chen, Z., Fu, J., Dou, X., Deng, Z., Wang, X., Ma, F., . . . Zhang, L. (2023). Comprehensive adulteration detection of sesame oil based on characteristic markers. Food Chemistry: X, 18, 100745.
- Çakmakçı, S., & Tahmas-Kahyaoglu, D. (2012). An Overview of the Effects of Fatty Acids on Health and Nutrition. Journal of Academic Food, 10(1), 103-113.
- Dıraman, H. (2006). An Study on The Determination of Probable Adulterations in Butter Milk And Virgin Olive Oil With Use of Cis Trans Isomers Levels of Fatty Acids by Means of A Capillary Gas Chromatography. Journal of Academic Food, 4(4), 3-10.
- Gimonkar, S., Van Fleet, E., & Boys, K. (2021). Dairy Product Fraud. R. Hellberg, K. Everstine, & S. Sklare, Food Fraud (s. 249-280). Kidlington: Academic Press.
- Gonzales-Martin, I., Vivar-Quintana, A., Revilla, I., & Salvador-Esteban, J. (2020). The determination of fatty acids in cheeses of variable composition (cow, ewe's, and goat) by means of near infrared spectroscopy. Microchemical Journal, 104854.
- Gürsoy, O., Fakı, R., Kocatürk, K., Esgin, G., & Yılmaz, Y. (2021). Fatty acid composition and conjugated linoleic acid content of cheeses produced with goat milk. Pamukkale University Journal of Engineering Sciences, 27(7), 835-841.
- Haenlein, G. (2004). Goat milk in human nutrition. Small Ruminant Research, 51, 155-163.
- He, Y., Zeng, W., Zhao, Y., Zhu, X., Wan, H., Zhang, M., & Li, Z. (2023). Rapid detection of adulteration of goat milk and goat infant formulas using near-infrared spectroscopy fingerprints. International Dairy Journal, 137, 105536.
- International Olive Oil Council. (2001). Preparation of the fatty acid methyl esters from olive oil and olive-pomace oil. Madrid: International Olive Oil Council.
- Karaoğlu, A. A. (2024). Effect of Microencapsulated Goat Clarified Butter on Free Fatty Acids and Physicochemical Properties in Cow Butter Production. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 7(3), 1136-1152. doi:https://doi.org/10.47495/okufbed.1378287
- Konar, A. (2001). Süt Teknolojisi. Adana: Cukurova University Faculty of Agriculture Publications.
- Manchester, K. (1996). Use of UV Methods for Measurement of Protein and Nucleic Acid Concentrations. BioTechniques, 20, 968-970.
- Mansour, M., & Sinclair, A. (1993). The trans fatty acid and positional (sn-2) fatty acid composition of some Australian margarines, dairy blends and animal fats. Asia Pacific Journal of Clinical Nutrition, 3, 155-163.
- Mora Garcia, M., & Clark, S. (2017). A 100-Year Review: Advances in goat milk research. Journal of Dairy Sicence, 100, 10026-10044.
- Paszczyk, B., & Łuczynska, J. (2020). The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods, 9, 1667. doi:10.3390/foods9111667
- Promega Global. (2018). Maxwell® RSC PureFood GMO and Authentication Kit. At 11 30, 2019 accessed from https://worldwide.promega.com/products/nucleic-acid-extraction/genomic-dna/maxwell-rsc-purefood-gmo-and-authentication-kit/?catNum=AS1600
- Sagdic, O., Dönmez, M., & Demirci, M. (2004). Comparison of characteristics and fatty acid profiles of traditional Turkish yayik butters produced from goats’, ewes’ or cows’ milk. Food Control, 15, 485-490.
- Sassi, M., Arena, S., & Scaloni, A. (2015). MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations. Journal of Agricultural and Food Chemistry, 63, 6157-6171.
- SNP Biyoteknoloji. (2019). Tür Tayin Real-Time PCR Kitleri. SNP Biyoteknoloji: Accessed from http://www.snp.com.tr/Eklenti/1325,keci-tur-tayin-real-time-pcr-kitipdf.pdf?1
Karışım Tereyağlarının Benzersiz Yağ Asidi Profillerinin Belirlenmesi: Bir Gaz Kromatografi Çalışması
Yıl 2025,
Sayı: 33, 32 - 39, 13.02.2025
Erdem Artuvan
,
Salih Aksay
Öz
Amaç: Bu çalışmada, keçi tereyağı ile inek tereyağının farklı oranlarda (%25, 50, 75 w/w) karıştırılmasıyla elde edilen tereyağının yağ asidi profilindeki değişimlerin gaz kromatografisi kullanılarak analiz edilmesi ve inek tereyağı ile tağşiş edilmiş keçi tereyağlarının saptanmasında belirleyici yağ asitlerinin tespit edilmesi amaçlanmıştır. Materyal ve yöntem: Kullanılan yağların saflığı Real-Time PCR ile belirlenmiştir. Yağ asitleri kompozisyonu analizleri Gaz Kromatografi (GC) cihazı ile yapılmıştır.
Tartışma ve sonuç: Çalışma sonucunda, keçi tereyağı oranı arttıkça kaprik asit miktarının önemli ölçüde arttığı ve doymamış yağ asitlerinin toplam yüzdesinin azaldığı gözlenmiştir. Kaprik asidin keçi peynirinde baskın olduğu, en yüksek doymuş yağ asidi içeriğinin inek peynirinde belirlendiği görülmüştür. Ayrıca, keçi tereyağına inek tereyağı eklendiğinde trans yağ oranının arttığı bulunmuştur. Çalışma sonucunda keçi ve inek tereyağı karışımlarında kaproik asit (6:0), kaprilik asit (8:0), kaprik asit (10:0), laurik asit (12:0), miristoleik asit (14:1), linoleik asit (18:2), linolenik asit (18:3) ve eikosenoik asit (20:1) içeriğinin belirleyici asit olarak kullanılabileceği saptanmıştır.
Proje Numarası
Mersin University Scientific Research Projects Unit project number 2021-1-TP3-4172 and TÜBİTAK project number 123O967
Kaynakça
- Akgül, F. Y., Ceylan, H. G., & Atasoy, A. F. (2020). Determination of fatty acids profiles and volatile compounds of cows’ and goats’ butters. International Journal of Agriculture Environment and Food Sciences, 4(1), 7-13. doi:https://doi.org/10.31015/jaefs.2020.1.2
- Abdugamitova, A., Serikbayeva, A., Mateyeva, A., Orymbetova, G., Mateyeva, S., Matibaeyva, A., & Toleugazykyzy, A. (2024). Proximate and fatty acid analysis of goat and goat-cow mixed milk cheeses. Potravinarstvo Slovak Journal of Food Sciences, 18, 807-813. doi:https://doi.org/10.5219/2000
- Aro, A., Antoine, J., Pizzoferrato, L., Reykdal, O., & van Poppel, G. (1998). Trans Fatty Acids in Dairy and Meat Products from 14 European Countries: The TRANSFAIR Study. Journal of Food Composition and Analysis, 11, 150-160.
- Artuvan, E., & Aksay, S. (2022). In food safety control overview of using Real-Time PCR. Biotech Studies, 31(2), 53-60.
- Bansal, S., Singh, A., Mangal, M., Mangal, A., & Kumar, S. (2017). Food adulteration: Sources, health risks, and detection methods. Critical Reviews in Food Science and Nutrition, 57(6), 1174-1189.
- Baptista, M., Cunha, J., & Domingues, L. (2021). DNA-based approaches for dairy products authentication: A review and perspectives. Trends in Food Science & Technology, 109, 386-397.
- Chen, Z., Fu, J., Dou, X., Deng, Z., Wang, X., Ma, F., . . . Zhang, L. (2023). Comprehensive adulteration detection of sesame oil based on characteristic markers. Food Chemistry: X, 18, 100745.
- Çakmakçı, S., & Tahmas-Kahyaoglu, D. (2012). An Overview of the Effects of Fatty Acids on Health and Nutrition. Journal of Academic Food, 10(1), 103-113.
- Dıraman, H. (2006). An Study on The Determination of Probable Adulterations in Butter Milk And Virgin Olive Oil With Use of Cis Trans Isomers Levels of Fatty Acids by Means of A Capillary Gas Chromatography. Journal of Academic Food, 4(4), 3-10.
- Gimonkar, S., Van Fleet, E., & Boys, K. (2021). Dairy Product Fraud. R. Hellberg, K. Everstine, & S. Sklare, Food Fraud (s. 249-280). Kidlington: Academic Press.
- Gonzales-Martin, I., Vivar-Quintana, A., Revilla, I., & Salvador-Esteban, J. (2020). The determination of fatty acids in cheeses of variable composition (cow, ewe's, and goat) by means of near infrared spectroscopy. Microchemical Journal, 104854.
- Gürsoy, O., Fakı, R., Kocatürk, K., Esgin, G., & Yılmaz, Y. (2021). Fatty acid composition and conjugated linoleic acid content of cheeses produced with goat milk. Pamukkale University Journal of Engineering Sciences, 27(7), 835-841.
- Haenlein, G. (2004). Goat milk in human nutrition. Small Ruminant Research, 51, 155-163.
- He, Y., Zeng, W., Zhao, Y., Zhu, X., Wan, H., Zhang, M., & Li, Z. (2023). Rapid detection of adulteration of goat milk and goat infant formulas using near-infrared spectroscopy fingerprints. International Dairy Journal, 137, 105536.
- International Olive Oil Council. (2001). Preparation of the fatty acid methyl esters from olive oil and olive-pomace oil. Madrid: International Olive Oil Council.
- Karaoğlu, A. A. (2024). Effect of Microencapsulated Goat Clarified Butter on Free Fatty Acids and Physicochemical Properties in Cow Butter Production. Osmaniye Korkut Ata University Journal of the Institute of Science and Technology, 7(3), 1136-1152. doi:https://doi.org/10.47495/okufbed.1378287
- Konar, A. (2001). Süt Teknolojisi. Adana: Cukurova University Faculty of Agriculture Publications.
- Manchester, K. (1996). Use of UV Methods for Measurement of Protein and Nucleic Acid Concentrations. BioTechniques, 20, 968-970.
- Mansour, M., & Sinclair, A. (1993). The trans fatty acid and positional (sn-2) fatty acid composition of some Australian margarines, dairy blends and animal fats. Asia Pacific Journal of Clinical Nutrition, 3, 155-163.
- Mora Garcia, M., & Clark, S. (2017). A 100-Year Review: Advances in goat milk research. Journal of Dairy Sicence, 100, 10026-10044.
- Paszczyk, B., & Łuczynska, J. (2020). The Comparison of Fatty Acid Composition and Lipid Quality Indices in Hard Cow, Sheep, and Goat Cheeses. Foods, 9, 1667. doi:10.3390/foods9111667
- Promega Global. (2018). Maxwell® RSC PureFood GMO and Authentication Kit. At 11 30, 2019 accessed from https://worldwide.promega.com/products/nucleic-acid-extraction/genomic-dna/maxwell-rsc-purefood-gmo-and-authentication-kit/?catNum=AS1600
- Sagdic, O., Dönmez, M., & Demirci, M. (2004). Comparison of characteristics and fatty acid profiles of traditional Turkish yayik butters produced from goats’, ewes’ or cows’ milk. Food Control, 15, 485-490.
- Sassi, M., Arena, S., & Scaloni, A. (2015). MALDI-TOF-MS Platform for Integrated Proteomic and Peptidomic Profiling of Milk Samples Allows Rapid Detection of Food Adulterations. Journal of Agricultural and Food Chemistry, 63, 6157-6171.
- SNP Biyoteknoloji. (2019). Tür Tayin Real-Time PCR Kitleri. SNP Biyoteknoloji: Accessed from http://www.snp.com.tr/Eklenti/1325,keci-tur-tayin-real-time-pcr-kitipdf.pdf?1