Research Article
BibTex RIS Cite

Development of an Automatic PV-Battery Powered Water Irrigation System with Arduino Software for Agricultural Activities

Year 2024, Volume: 10 Issue: 2, 314 - 328, 31.08.2024

Abstract

The study proposes a water irrigation-based solar-powered system for homegrown plants and greenhouse gardens, utilizing solar energy for electricity consumption. The Arduino platform programs sensors and water motors, ensuring optimal operation. A water tank supplies plants with water through a water motor and sensor, while an ATmega328 microprocessor detects plant moisture levels, ensuring an efficient water supply for general plant maintenance. The Arduino controls a water motor, powered by a 3V DC voltage, and a humidity sensor. The sensor sends 3V DC to the motor, allowing water to be pumped. The Arduino's trigger pin is set to the 8th, and the sensor signals the Arduino when the soil moisture value decreases. The drip irrigation method is designed to implement the irrigation process by pumping the water in the tank through the pipes using a DC motor. The I-V and P-V curves of solar cells connected serially show an open circuit voltage of 27 V and a short circuit of 190 mA. The P-V curve shows a 3-watt maximum power for 20 V, which can safely charge a 6V, 2 Ah current battery for 4 hours. The Arduino-based autonomous irrigation system saves farmers' physical work and improves resource efficiency. The irrigation system utilizes a boost converter, a DC-DC switching converter, to step up the input voltage and increase the output voltage, enabling remote monitoring of humidity, water, and energy consumption in flowerpots. This converter is safe for farmers to use for irrigation and agriculture. The converter achieves significant step-up voltage gain with a suitable duty ratio and minimal voltage stress on the power switches. Additionally, energy stored in the connected inductor's leaky inductor can be recycled to power the output. The designed drip irrigation is sustainable and environmentally friendly and can be used in agriculture to produce many plants, legumes, starchy foods, and fruits.

References

  • [1] G. J. Hoffman, R. G. Evans, M. E. Jensen, D. L. Martin, and R. L. Elliott, Design and operation of farm irrigation systems. American Society of Agricultural and Biological Engineers. St. Joseph, Michigan, 2007.
  • [2] W. R. Walker, Food and Agriculture Organization of the United Nations. Guidelines for designing and evaluating surface irrigation systems, Food and Agriculture Organization of the United Nations, Rome, 1989.
  • [3] Y. Gamal, A. Soltan, L. A. Said, A. H. Madian, A. G. Radwan, ‘’Smart Irrigation Systems: Overview,’’ IEEE Access, vol.4, pp.99, January 2023. Doi:10.1109/ACCESS.2023.3251655
  • [4] S. L Davis, M. D. Dukes, ‘’Irrigation scheduling performance by evapotranspiration-based controllers,’’ Agricultural Water Management, vol. 98, pp. 19-28, December 2010. Doi:10.1016/j.agwat.2010.07.006
  • [5] I. Kisekka, K. W. Migliaccio, M. D. Dukes, B. Schaffer, J.H. Crane, H. K. Bayabil, S.M. Guzman, ‘‘Evapotranspiration-Based Irrigation for Agriculture: Sources of Evapotranspiration data for Irrigation Scheduling in Florida, EDIS, April 2010. Doi:10.32473/edis-ae455-2010
  • [6] T. A. Manfo, A. A. Abdullahi, S. D. Pawan, “Effect of Layered, Spinel, and Olivine-Based Positive Electrode Materials on Rechargeable Lithium-Ion Batteries: A Review,’’ Journal of Computational Mechanics, Power System, and Control, vol. 6, pp. 38-57, November 2023. Doi:10.46253/jcmps.v6i4.a4
  • [7] T. A. Manfo, ‘’Progress into lithium-ion battery research,’’ Journal of Chemical Research, vol. 47, no. 3, pp. 1–9, 2023. Doi:10.1177/17475198231183349
  • [8] T. A. Manfo, S. Konwar, P. K. Singh, R.M. Mehra, Y. Kumar, M. Gupta, “PEO + NaSCN and ionic liquid-based polymer electrolyte for supercapacitor,’’ Mater. Today: Proc, vol. 34, pp. 802-812, June 2020. Doi:10.1016/j.matpr.2020.05.340
  • [9] M. E. Şahin, H. İ. Okumuş, “Modeling and simulation of solar cell module with Matlab/Simulink,’’ EMO Scientific Journal, vol. 3, no. 5, June 2013.
  • [10] M. E. Şahin, “A photovoltaic powered electrolysis converter system with maximum power point tracking control,’’ International Journal of Hydrogen Energy, vol. 45, no:16 pp.9293-9304, March 2020. Doi: 10.1016/j.ijhydene.2020.01.162
  • [11] M. E. Şahin, ‘’Energy Management and Measurement of Computer Controlled Solar House Model for Rize City,’’ Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.10, no: 2, pp.404-414, 2020. Doi: 10.17714/gumusfenbil.544087
  • [12] M. E. Şahin, H. İ. Okumuş, ‘’Parallel-connected buck-boost converter with FLC for hybrid energy system,’’ Electric Power Components and Systems, vol. 48, no:19-20, pp. 2117-2129, 2021. Doi: 10.1080/15325008.2021.1913261
  • [13] M. E. Şahin, H. İ. Okumuş, “Physical Structure, Electrical Design, Mathematical Modeling and Simulation of Solar Cell Modules,’’ Turkish Journal of Electromechanics & Energy, vol.1, no, pp. 5-12, March 2016.
  • [14] N. Badi, T. A. Manfo, S. A. Alghamdi, A. S. Alatawi, A. Almasoudi, A. Lakhouit, A. S. Roy, A. Ignatiev, “Thermal effect on curved photovoltaic panels: Model validation and application in the Tabuk region,’’ PLoS ONE, vol. 17, no. 11, pp. 1-16, November 2022. Doi: 10.1371/journal. pone.0275467
  • [15] T. A. Manfo, “Promising Cathode Materials for Rechargeable Lithium-Ion Batteries: A Review,’’ Journal of Sustainable Energy, vol. 14, no:1 pp. 51-58, June 2023. Doi: 10.0909/JSE.2023660090
  • [16] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review,’’ Energy & Environmental Science, vol. 4, no. 9, pp. 3243-3262, January 2011. Doi: 10.1039/C1EE01598B
  • [17] T. A. Manfo, “A Comprehensive Analysis of Material Revolution to Evolution in Lithium-ion Battery Technology,” Turkish Journal of Materials, vol. 8, no:1, pp.1-3, July 2023.
  • [18] N. Badi, T. A. Manfo, S. A. Alghamdi, H. A. Al-Aoh, A. Lakhouit, P.K. Singh, M. N. F. Norrrahim, G. Nath, “The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries,’’ Polymers, vol.14, pp. 3101, July 2022. Doi: 10.3390/polym14153101
  • [19] P. Debaeke and A. Aboudrare, “Adaptation of crop management to water-limited environments,’’ European Journal of Agronomy, vol. 21, no.4, pp. 433-446, December 2004. Doi: 10.1016/j.eja.2004.07.006
  • [20] D. D. Fangmeier, D. J. Garrot, C. F. Mancino, and S. H. Husman, S. H. “Automated Irrigation Systems Using Plant and Soil Sensors,” ASAE Publication, No:4-90, pp. 533-537, Michigan, USA, 1990.
  • [21] J. E. Ayars, C. J. Phene, R. B. Hutmacher, K. R. Davis, R. A. Schoneman, S. S. Vail, and R. M. Mead, “Subsurface drip irrigation of row crops: a review of 15 years research at the Water Management Research Laboratory,’’ Agricultural Water Management, vol. 42, pp. 1-27, 1999.
  • [22] A. G. Bayrakcı, G. Koçar, “Utilization of renewable energies in Turkey’s agriculture,’’ Renewable and Sustainable Energy Reviews, vol. 16, pp.618–633, January 2012. Doi: 10.1016/j.rser.2011.08.027.
  • [23] M. Arık, İ. Korkut, “Irrigatıon in Agriculture and Automation Based Irrigation Systems (Mini-Review),’’ Gazi University Journal of Science Part C: Design and Technology, vol. 10, no. 2, pp.360-367, 2022. Doi: 10.29109/gujsc.1108504.
  • [24] B. Çakmak, T. Aküzüm, B. Benli, “Water problem in the world in the 21st century,’’ 7th Culture Technique Congress, Nevşehir, Turkiye, 1999, pp. 8-16.
  • [25] G. Dearib, “Cooperative Automatic Irrigation System using Arduino,’’ International Journal of Science and Research, vol. 6, no. 3 pp. 1781-1787, March 2017. Doi: 10.21275/ART20171731
  • [26] S. Rakshak, R. W. Deshpande, “Automated Irrigation System Based on Arduino Controller Using Sensors,’’ International Journal of Innovative Research in Computer and Communication Engineering, vol. 5, no. 7, pp. 13394-13400, 2017.
  • [27] H. T Ingale, N. Kasat, “Automated Irrigation System,” Proceedings of the International Journal of Engineering Research and Development, vol. 4, November 2012.
  • [28] C. Yilmaz, E. Sefer, M. E. Şahin, “Greenhouse Automation with Solar Cell,” Proceedings of EEMGG2021, Trabzon Türkiye, September 2021, pp.91-97.
  • [29] K. Taneja, S. Bhatia, “Automatic Irrigation System using Arduino UNO,’’ International Conference on Intelligent Computing and Control Systems ICICCS, Madurai-India, June 2017. Doi: 10.1109/ICCONS.2017.8250693
  • [30] V. Ramanjaneyulu, K. Devendra Reddy, P. Madhuri, “DTMF Based Irrigation Water Pump Control System,’’ International Journal of Research, vol. 5, no.12, pp. 579-582, April 2018.
  • [31] R. Senol, “Agricultural Irrigation, and Solar Energy,’’ Gazi University Engineering Journal of the Faculty of Architecture, vol, 27, no.3, pp. 519-526, 2020.
  • [32] M. Baytürk, G. Çetin A. Çetin, “The Application of Internet Based Greenhouse Automation System Designed with Embedded Server,’’ Journal of Information Technologies, vol.6, no.2, pp.653-657, 2013.
  • [33] İ. Şahin, M. H. Calp, A. Özkan, “An Expert System Design and Application for Hydroponics Greenhouse Systems,’’ Gazi University Journal of Science, vol. 27, no. 2, pp. 809-822, January 2014.
  • [34] A. Kurklu, and N. Caglayan, “A Study on the Development of Greenhouse Automation Systems,’’ Akdeniz University Journal of the Faculty Agriculture, vol.18, no.1, pp. 25-34, 2005
  • [35] A. Sener, “Freeze-Cold Warning and Automatic Heating in Greenhouses, Extreme Hot Warning and Automatic Ventilation Cooling System.’’ Master's Thesis, Yüzüncü Yıl University Institute of Science, Van, Türkiye, 1990.
  • [36] N. Durmaz, “A Study on gradual and automatic opening and closing of ventilation covers in greenhouses.’’ Master's Thesis, Akdeniz University, Institute of Science, Antalya, Türkiye, 1994.
  • [37] S. R. Barkunan, V. Bhanumathi, J. Sethuram, “Smart sensor for automatic drip irrigation system for paddy cultivation,’’ Computers, and Electrical Engineering, vol. 73, pp. 180-193, January 2019. Doi:10.1016/j.compeleceng.2018.11.013
  • [38] C. Küçüksayan, “The Importance of Automatic Irrigation in Landscape Applications and Examination of Its Application in the City of Ankara.’’ Master Thesis, Bartın University Institute of Science and Technology, Bartın, Türkiye, 2010.
  • [39] K. Obaideen, B. A. A. Yousef, M. N. AlMallahi, Y. C. Tan, M. Mahmoud, H. Jaber, M. Ramadan, “An overview of smart irrigation systems using IoT,” Energy Nexus, vol. 7, pp. 100124, 2022. Doi: 10.1016/j.nexus.2022.100124
  • [40] D. Yavuz, R. Topak, N. Yavuz, “Determining energy consumption of sprinkler irrigation for different crops in Konya Plain,’’ Turkish Journal of Agricultural and Natural Sciences, vol. 1, no.3, pp.312-321, 2014.
  • [41] S. Khan, M. A. Khan, M. A. Hanjra, J. Mu, “Pathways to reduce the environmental footprints of water and energy inputs in food production,’’ Food Policy, vol. 34, no.2, pp.141-149, 2009. Doi: 10.1016/j.foodpol.2008.11.002
  • [42] H. G. Mobtaker, A. Keyhani, A. Mohammadi, S. Rafiee, A. Akram, “Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran,’’ Agriculture, Ecosystems & Environment, vol. 137, no.3, pp.367-372, 2010. Doi:10.1016/j.agee.2010.03.011
  • [43] C. Sivaji, M. Ramachandran, V. Prasanth, S. Sriram, S. Sowmiya, “Application of Arduino Devices in various IOT Application,’’ Renewable and Nonrenewable Energy, vol 1, no.1, June 2022. Doi: 10.46632/rne/1/1/7
  • [44] A. Hassan, S. B. Sheng, W. M. Shah, and N. Bahaman, An Automated Irrigation System Using Arduino Microcontroller. Chapter 1 In book: Internet of Things: Usage and Application, Publisher: Penerbit Universiti Teknikal Malaysia, Melaka. pp.1-13, 2018.

Development of an Automatic PV-Battery Powered Water Irrigation System with Arduino Software for Agricultural Activities

Year 2024, Volume: 10 Issue: 2, 314 - 328, 31.08.2024

Abstract

The study proposes a water irrigation-based solar-powered system for homegrown plants and greenhouse gardens, utilizing solar energy for electricity consumption. The Arduino platform programs sensors and water motors, ensuring optimal operation. A water tank supplies plants with water through a water motor and sensor, while an ATmega328 microprocessor detects plant moisture levels, ensuring an efficient water supply for general plant maintenance. The Arduino controls a water motor, powered by a 3V DC voltage, and a humidity sensor. The sensor sends 3V DC to the motor, allowing water to be pumped. The Arduino's trigger pin is set to the 8th, and the sensor signals the Arduino when the soil moisture value decreases. The drip irrigation method is designed to implement the irrigation process by pumping the water in the tank through the pipes using a DC motor. The I-V and P-V curves of solar cells connected serially show an open circuit voltage of 27 V and a short circuit of 190 mA. The P-V curve shows a 3-watt maximum power for 20 V, which can safely charge a 6V, 2 Ah current battery for 4 hours. The Arduino-based autonomous irrigation system saves farmers' physical work and improves resource efficiency. The irrigation system utilizes a boost converter, a DC-DC switching converter, to step up the input voltage and increase the output voltage, enabling remote monitoring of humidity, water, and energy consumption in flowerpots. This converter is safe for farmers to use for irrigation and agriculture. The converter achieves significant step-up voltage gain with a suitable duty ratio and minimal voltage stress on the power switches. Additionally, energy stored in the connected inductor's leaky inductor can be recycled to power the output. The designed drip irrigation is sustainable and environmentally friendly and can be used in agriculture to produce many plants, legumes, starchy foods, and fruits.

References

  • [1] G. J. Hoffman, R. G. Evans, M. E. Jensen, D. L. Martin, and R. L. Elliott, Design and operation of farm irrigation systems. American Society of Agricultural and Biological Engineers. St. Joseph, Michigan, 2007.
  • [2] W. R. Walker, Food and Agriculture Organization of the United Nations. Guidelines for designing and evaluating surface irrigation systems, Food and Agriculture Organization of the United Nations, Rome, 1989.
  • [3] Y. Gamal, A. Soltan, L. A. Said, A. H. Madian, A. G. Radwan, ‘’Smart Irrigation Systems: Overview,’’ IEEE Access, vol.4, pp.99, January 2023. Doi:10.1109/ACCESS.2023.3251655
  • [4] S. L Davis, M. D. Dukes, ‘’Irrigation scheduling performance by evapotranspiration-based controllers,’’ Agricultural Water Management, vol. 98, pp. 19-28, December 2010. Doi:10.1016/j.agwat.2010.07.006
  • [5] I. Kisekka, K. W. Migliaccio, M. D. Dukes, B. Schaffer, J.H. Crane, H. K. Bayabil, S.M. Guzman, ‘‘Evapotranspiration-Based Irrigation for Agriculture: Sources of Evapotranspiration data for Irrigation Scheduling in Florida, EDIS, April 2010. Doi:10.32473/edis-ae455-2010
  • [6] T. A. Manfo, A. A. Abdullahi, S. D. Pawan, “Effect of Layered, Spinel, and Olivine-Based Positive Electrode Materials on Rechargeable Lithium-Ion Batteries: A Review,’’ Journal of Computational Mechanics, Power System, and Control, vol. 6, pp. 38-57, November 2023. Doi:10.46253/jcmps.v6i4.a4
  • [7] T. A. Manfo, ‘’Progress into lithium-ion battery research,’’ Journal of Chemical Research, vol. 47, no. 3, pp. 1–9, 2023. Doi:10.1177/17475198231183349
  • [8] T. A. Manfo, S. Konwar, P. K. Singh, R.M. Mehra, Y. Kumar, M. Gupta, “PEO + NaSCN and ionic liquid-based polymer electrolyte for supercapacitor,’’ Mater. Today: Proc, vol. 34, pp. 802-812, June 2020. Doi:10.1016/j.matpr.2020.05.340
  • [9] M. E. Şahin, H. İ. Okumuş, “Modeling and simulation of solar cell module with Matlab/Simulink,’’ EMO Scientific Journal, vol. 3, no. 5, June 2013.
  • [10] M. E. Şahin, “A photovoltaic powered electrolysis converter system with maximum power point tracking control,’’ International Journal of Hydrogen Energy, vol. 45, no:16 pp.9293-9304, March 2020. Doi: 10.1016/j.ijhydene.2020.01.162
  • [11] M. E. Şahin, ‘’Energy Management and Measurement of Computer Controlled Solar House Model for Rize City,’’ Gümüşhane Üniversitesi Fen Bilimleri Dergisi, vol.10, no: 2, pp.404-414, 2020. Doi: 10.17714/gumusfenbil.544087
  • [12] M. E. Şahin, H. İ. Okumuş, ‘’Parallel-connected buck-boost converter with FLC for hybrid energy system,’’ Electric Power Components and Systems, vol. 48, no:19-20, pp. 2117-2129, 2021. Doi: 10.1080/15325008.2021.1913261
  • [13] M. E. Şahin, H. İ. Okumuş, “Physical Structure, Electrical Design, Mathematical Modeling and Simulation of Solar Cell Modules,’’ Turkish Journal of Electromechanics & Energy, vol.1, no, pp. 5-12, March 2016.
  • [14] N. Badi, T. A. Manfo, S. A. Alghamdi, A. S. Alatawi, A. Almasoudi, A. Lakhouit, A. S. Roy, A. Ignatiev, “Thermal effect on curved photovoltaic panels: Model validation and application in the Tabuk region,’’ PLoS ONE, vol. 17, no. 11, pp. 1-16, November 2022. Doi: 10.1371/journal. pone.0275467
  • [15] T. A. Manfo, “Promising Cathode Materials for Rechargeable Lithium-Ion Batteries: A Review,’’ Journal of Sustainable Energy, vol. 14, no:1 pp. 51-58, June 2023. Doi: 10.0909/JSE.2023660090
  • [16] V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, “Challenges in the development of advanced Li-ion batteries: a review,’’ Energy & Environmental Science, vol. 4, no. 9, pp. 3243-3262, January 2011. Doi: 10.1039/C1EE01598B
  • [17] T. A. Manfo, “A Comprehensive Analysis of Material Revolution to Evolution in Lithium-ion Battery Technology,” Turkish Journal of Materials, vol. 8, no:1, pp.1-3, July 2023.
  • [18] N. Badi, T. A. Manfo, S. A. Alghamdi, H. A. Al-Aoh, A. Lakhouit, P.K. Singh, M. N. F. Norrrahim, G. Nath, “The Impact of Polymer Electrolyte Properties on Lithium-Ion Batteries,’’ Polymers, vol.14, pp. 3101, July 2022. Doi: 10.3390/polym14153101
  • [19] P. Debaeke and A. Aboudrare, “Adaptation of crop management to water-limited environments,’’ European Journal of Agronomy, vol. 21, no.4, pp. 433-446, December 2004. Doi: 10.1016/j.eja.2004.07.006
  • [20] D. D. Fangmeier, D. J. Garrot, C. F. Mancino, and S. H. Husman, S. H. “Automated Irrigation Systems Using Plant and Soil Sensors,” ASAE Publication, No:4-90, pp. 533-537, Michigan, USA, 1990.
  • [21] J. E. Ayars, C. J. Phene, R. B. Hutmacher, K. R. Davis, R. A. Schoneman, S. S. Vail, and R. M. Mead, “Subsurface drip irrigation of row crops: a review of 15 years research at the Water Management Research Laboratory,’’ Agricultural Water Management, vol. 42, pp. 1-27, 1999.
  • [22] A. G. Bayrakcı, G. Koçar, “Utilization of renewable energies in Turkey’s agriculture,’’ Renewable and Sustainable Energy Reviews, vol. 16, pp.618–633, January 2012. Doi: 10.1016/j.rser.2011.08.027.
  • [23] M. Arık, İ. Korkut, “Irrigatıon in Agriculture and Automation Based Irrigation Systems (Mini-Review),’’ Gazi University Journal of Science Part C: Design and Technology, vol. 10, no. 2, pp.360-367, 2022. Doi: 10.29109/gujsc.1108504.
  • [24] B. Çakmak, T. Aküzüm, B. Benli, “Water problem in the world in the 21st century,’’ 7th Culture Technique Congress, Nevşehir, Turkiye, 1999, pp. 8-16.
  • [25] G. Dearib, “Cooperative Automatic Irrigation System using Arduino,’’ International Journal of Science and Research, vol. 6, no. 3 pp. 1781-1787, March 2017. Doi: 10.21275/ART20171731
  • [26] S. Rakshak, R. W. Deshpande, “Automated Irrigation System Based on Arduino Controller Using Sensors,’’ International Journal of Innovative Research in Computer and Communication Engineering, vol. 5, no. 7, pp. 13394-13400, 2017.
  • [27] H. T Ingale, N. Kasat, “Automated Irrigation System,” Proceedings of the International Journal of Engineering Research and Development, vol. 4, November 2012.
  • [28] C. Yilmaz, E. Sefer, M. E. Şahin, “Greenhouse Automation with Solar Cell,” Proceedings of EEMGG2021, Trabzon Türkiye, September 2021, pp.91-97.
  • [29] K. Taneja, S. Bhatia, “Automatic Irrigation System using Arduino UNO,’’ International Conference on Intelligent Computing and Control Systems ICICCS, Madurai-India, June 2017. Doi: 10.1109/ICCONS.2017.8250693
  • [30] V. Ramanjaneyulu, K. Devendra Reddy, P. Madhuri, “DTMF Based Irrigation Water Pump Control System,’’ International Journal of Research, vol. 5, no.12, pp. 579-582, April 2018.
  • [31] R. Senol, “Agricultural Irrigation, and Solar Energy,’’ Gazi University Engineering Journal of the Faculty of Architecture, vol, 27, no.3, pp. 519-526, 2020.
  • [32] M. Baytürk, G. Çetin A. Çetin, “The Application of Internet Based Greenhouse Automation System Designed with Embedded Server,’’ Journal of Information Technologies, vol.6, no.2, pp.653-657, 2013.
  • [33] İ. Şahin, M. H. Calp, A. Özkan, “An Expert System Design and Application for Hydroponics Greenhouse Systems,’’ Gazi University Journal of Science, vol. 27, no. 2, pp. 809-822, January 2014.
  • [34] A. Kurklu, and N. Caglayan, “A Study on the Development of Greenhouse Automation Systems,’’ Akdeniz University Journal of the Faculty Agriculture, vol.18, no.1, pp. 25-34, 2005
  • [35] A. Sener, “Freeze-Cold Warning and Automatic Heating in Greenhouses, Extreme Hot Warning and Automatic Ventilation Cooling System.’’ Master's Thesis, Yüzüncü Yıl University Institute of Science, Van, Türkiye, 1990.
  • [36] N. Durmaz, “A Study on gradual and automatic opening and closing of ventilation covers in greenhouses.’’ Master's Thesis, Akdeniz University, Institute of Science, Antalya, Türkiye, 1994.
  • [37] S. R. Barkunan, V. Bhanumathi, J. Sethuram, “Smart sensor for automatic drip irrigation system for paddy cultivation,’’ Computers, and Electrical Engineering, vol. 73, pp. 180-193, January 2019. Doi:10.1016/j.compeleceng.2018.11.013
  • [38] C. Küçüksayan, “The Importance of Automatic Irrigation in Landscape Applications and Examination of Its Application in the City of Ankara.’’ Master Thesis, Bartın University Institute of Science and Technology, Bartın, Türkiye, 2010.
  • [39] K. Obaideen, B. A. A. Yousef, M. N. AlMallahi, Y. C. Tan, M. Mahmoud, H. Jaber, M. Ramadan, “An overview of smart irrigation systems using IoT,” Energy Nexus, vol. 7, pp. 100124, 2022. Doi: 10.1016/j.nexus.2022.100124
  • [40] D. Yavuz, R. Topak, N. Yavuz, “Determining energy consumption of sprinkler irrigation for different crops in Konya Plain,’’ Turkish Journal of Agricultural and Natural Sciences, vol. 1, no.3, pp.312-321, 2014.
  • [41] S. Khan, M. A. Khan, M. A. Hanjra, J. Mu, “Pathways to reduce the environmental footprints of water and energy inputs in food production,’’ Food Policy, vol. 34, no.2, pp.141-149, 2009. Doi: 10.1016/j.foodpol.2008.11.002
  • [42] H. G. Mobtaker, A. Keyhani, A. Mohammadi, S. Rafiee, A. Akram, “Sensitivity analysis of energy inputs for barley production in Hamedan Province of Iran,’’ Agriculture, Ecosystems & Environment, vol. 137, no.3, pp.367-372, 2010. Doi:10.1016/j.agee.2010.03.011
  • [43] C. Sivaji, M. Ramachandran, V. Prasanth, S. Sriram, S. Sowmiya, “Application of Arduino Devices in various IOT Application,’’ Renewable and Nonrenewable Energy, vol 1, no.1, June 2022. Doi: 10.46632/rne/1/1/7
  • [44] A. Hassan, S. B. Sheng, W. M. Shah, and N. Bahaman, An Automated Irrigation System Using Arduino Microcontroller. Chapter 1 In book: Internet of Things: Usage and Application, Publisher: Penerbit Universiti Teknikal Malaysia, Melaka. pp.1-13, 2018.
There are 44 citations in total.

Details

Primary Language English
Subjects Circuits and Systems, Electrical Energy Storage, Power Plants, Photovoltaic Power Systems
Journal Section Research Articles
Authors

Theodore Azemtsop Manfo 0000-0002-9043-3111

Mustafa Ergin Şahin 0000-0002-5121-6173

Early Pub Date August 12, 2024
Publication Date August 31, 2024
Submission Date March 28, 2024
Acceptance Date July 17, 2024
Published in Issue Year 2024 Volume: 10 Issue: 2

Cite

IEEE T. Azemtsop Manfo and M. E. Şahin, “Development of an Automatic PV-Battery Powered Water Irrigation System with Arduino Software for Agricultural Activities”, GJES, vol. 10, no. 2, pp. 314–328, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg