Araştırma Makalesi
BibTex RIS Kaynak Göster

Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine

Yıl 2022, Cilt: 3 Sayı: 1, 44 - 53, 18.05.2022

Öz

Bu çalışmada, Szász operatörlerinin genellemelerinden biri olan Brenke tipli polinomlar kullanılarak yeni bir modifikasyon oluşturulmuştur. Yeni oluşturulan bu modifikasyon operatörün öncelikle Korovkin teoreminin koşullarını sağladığı gösterilmiştir. Daha sonra yaklaşım hızı, klasik ve ikinci mertebeden süreklilik modülü ve de Lipschitz sınıfından fonksiyonlar yardımıyla yaklaşım hızı hesaplanmıştır.

Kaynakça

  • [1] Szász, O. (1950). Generalization of S. Bernstein’s polynomials to the infinite interval. Journal of Research of the National Bureau of Standards, 45, 239-245.
  • [2] Jakimovski, A. and Leviatan, D. (1969). Generalized Szász operators for the approximation in the infinite interval. Mathematica, 11, 97-103.
  • [3] Ismail, M.E.H. (1974). On a generalization of Szász operators. Mathematica, 39, 259-267.
  • [4] Varma, S., Sucu, S. and İçöz, G. (2012). Generalization of Szász operators involving Brenke type polynomials. Computers & Mathematics with Applications, 64, 121-127.
  • [5] Sucu, S., İçöz, G. and Varma, S. (2012). On some extensions of Szász operators including Boas-Buck type polynomials. Abstract and Applied Analysis, 680340.
  • [6] İçöz, G., Varma, S. and Sucu, S. (2016). Approximation by operators including generalized Appell polynomials. Filomat, 30, 429-440.
  • [7] İçöz, G. and Çekim, B. (2016). Stancu-type generalizations of the Chan-Chyan-Srivastava operators. Filomat, 30, 3733-3742.
  • [8] Sucu, S. and Varma, S. (2019). Approximation by sequence of operators involving analytic functions. Mathematics, 7(2), 188.
  • [9] Sucu, S. and Varma, S. (2015). Generalization of Jakimovski−Leviatan type Szász operators. Applied Mathematics and Computation, 270, 977-983.
  • [10] Sucu, S. (2014). Dunkl analogue of Szász operators. Applied Mathematics and Computation, 244, 42-48.
  • [11] Cai, Q.B., Yüksel, İ., Dinlemez Kantar, Ü. and Çekim, B. (2019). Approximation properties of Durrmeyer type of Bleimann-Butzer and Hahn Operators. Journal of Function Spaces, 7047656.
  • [12] Çekim. B., Dinlemez Kantar, Ü. and Yüksel, İ. (2017). Dunkl generalization of Szász-Beta type operators. Mathematical Methods in the Applied Sciences, 40(18), 7697-7704.
  • [13] Yazıcı, S. and Çekim, B. (2017). A Kantorovich type generalization of the Szász operators via two variable Hermite polynomials. Gazi University Journal of Science, 30(4), 432-440.
  • [14] Aktaş, R., Söylemez, D., and Taşdelen, F. (2019). Stancu type generalization of Szász-Durrmeyer operators involving Brenke-type polynomials. Filomat, 33(3), 855- 868.
  • [15] Aktaş, R., Çekim, B. and Taşdelen, F. (2013). A Kantorovich-Stancu type generalization of Szász operators including Brenke-type polynomials. Journal of Function Spaces and Applications, 2013: 1-9.
  • [16] Taşdelen, F., Aktaş, R. and Altın, A. (2012). A Kantorovich type of Szász Operators including Brenke type polynomial. Abstract and Applied Analysis, 2012, 1-13.
  • [17] Çekim, B., Aktaş, R. and İçöz, G. (2019). Kantorovich-Stancu type operators including Boas-Buck type polynomials. Hacettepe Journal of Mathematics and Statistics, 48(2), 460-471.
  • [18] Gavrea, I. and Rasa, I. (1993). Remarks on some quantitative Korovkin-type results. Revue d'analyse numérique et de Théorie de l'approximation, 22, 173-176.
  • [19] Rainville, E.D. (1960). Special Functions Macmillan, New York, NY, USA, 1960.
  • [20] Altomare, F. and Campiti, M. (1994). Korovkin-type Approximation Theory and Its Applications, de Gruyter Studies in Mathematics, 17, 1994.
  • [21] Devore, R.A. and Lorentz, G.G. (1993). Constructive Approximation, Springer, Berlin, Germany, 1993.
  • [22] Zhuk, V.V. (1989). Functions of the Lip1 class and S. N. Bernstein’s polynomials (Russian). Vestnik Leningradskogo Universiteta. Matematika, Mekhanika, Astronomiya, 1, 25-30.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Gurhan İçöz 0000-0003-1204-9517

Hatice Eryiğit 0000-0002-0850-8410

Yayımlanma Tarihi 18 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

APA İçöz, G., & Eryiğit, H. (2022). Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine. Gazi Üniversitesi Fen Fakültesi Dergisi, 3(1), 44-53.
AMA İçöz G, Eryiğit H. Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine. GÜFFD. Mayıs 2022;3(1):44-53.
Chicago İçöz, Gurhan, ve Hatice Eryiğit. “Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine”. Gazi Üniversitesi Fen Fakültesi Dergisi 3, sy. 1 (Mayıs 2022): 44-53.
EndNote İçöz G, Eryiğit H (01 Mayıs 2022) Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine. Gazi Üniversitesi Fen Fakültesi Dergisi 3 1 44–53.
IEEE G. İçöz ve H. Eryiğit, “Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine”, GÜFFD, c. 3, sy. 1, ss. 44–53, 2022.
ISNAD İçöz, Gurhan - Eryiğit, Hatice. “Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine”. Gazi Üniversitesi Fen Fakültesi Dergisi 3/1 (Mayıs 2022), 44-53.
JAMA İçöz G, Eryiğit H. Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine. GÜFFD. 2022;3:44–53.
MLA İçöz, Gurhan ve Hatice Eryiğit. “Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine”. Gazi Üniversitesi Fen Fakültesi Dergisi, c. 3, sy. 1, 2022, ss. 44-53.
Vancouver İçöz G, Eryiğit H. Brenke Tipli Polinomlar Yardımıyla Yeni Bir Lineer Pozitif Operatörün Yaklaşım Özellikleri Üzerine. GÜFFD. 2022;3(1):44-53.