Review
BibTex RIS Cite

Pharmacologically Active Molecules Bearing the Pyridazinone Ring as Main Scaffold

Year 2022, Volume: 4 Issue: 2, 61 - 79, 31.08.2022

Abstract

Pyridazines are organic compounds in which benzene has nitrogen atoms instead of two carbon atoms. The pyridazine structure is one of the heteroaromatic rings that can be developed for drug design. Pyridazinone analogues are found in the structure of drugs with different activities. This core is of interest to medicinal chemists because of its diverse pharmacological activities. In this review, some of the antibacterial and antifungal, analgesic and anti-inflammatory, anticancer, cardiovascular and anticholinesterase compounds with pyridazinone structure are mentioned.

References

  • Ahmad, S., Rathish, I. G., Bano, S., Alam, M. S., & Javed, K. (2010). Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4, 5-dihydropyridazin-3 (2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(2), 266-271.
  • Ahmed, E. M., Kassab, A. E., El-Malah, A. A., & Hassan, M. S. (2019). Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 171, 25-37.
  • Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F., & Alam, M. M. (2016). The therapeutic journey of pyridazinone. European journal of medicinal chemistry, 123, 256-281.
  • Alagöz, M., Özdemir, Z., & Özçelik, A. (2019). Molecular Modelling Studies of Pyridazinone Derivatives as Antibutyrylcholinesterases. International Journal of Pharmacy and Chemistry, 5(3), 206-231.
  • Allerton, C. M., Andrews, M. D., Blagg, J., Ellis, D., Evrard, E., Green, M. P., ... & Watson, L. (2009). BaytaşDesign and synthesis of pyridazinone-based 5-HT2C agonists. Bioorganic & medicinal chemistry letters, 19(19), 5791-5795.
  • Al-Tel, T. H. (2010). Design and synthesis of novel tetrahydro-2H-Pyrano [3, 2-c] Pyridazin-3 (6H)-one derivatives as potential anticancer agents. European journal of medicinal chemistry, 45(12), 5724-5731.
  • Asif, M. (2019). A Review on Pyridazinone Ring Containing Various Cardioactive Agents. Journal of Chemical Reviews, 1(1), 66-77.
  • Asif, M., & Alam, M. (2020). Study of heterocyclic-fused pyridazinone analogues having phosphodiestrase-IV inhibitor activities as anti-inflammatory agents. Journal of Medicinal and Chemical Sciences, 3(2), 109-117.
  • Bansal, R., & Thota, S. (2013). Pyridazin-3 (2H)-ones: the versatile pharmacophore of medicinal significance. Medicinal Chemistry Research, 22(6), 2539-2552.
  • Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., ... & Gérard, S. (2018). Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 146, 139-146.
  • Baytaş, S., Inceler, N., Mavaneh, K. F., Uludağ, M. O., Abacıoğlu, N., & Gökçe, M. (2012). Synthesis Of Antipyrine/Pyridazinone Hybrids And İnvestigation Of Their İn Vivo Analgesic And Anti-İnflammatory Activities. Turkish Journal Of Chemistry, 36(5), 734-748.
  • Betti, L., Zanelli, M., Giannaccini, G., Manetti, F., Schenone, S., & Strappaghetti, G. (2006). Synthesis of new piperazine–pyridazinone derivatives and their binding affinity toward α1-, α2-adrenergic and 5-HT1A serotoninergic receptors. Bioorganic & Medicinal Chemistry, 14(8), 2828-2836.
  • Bruel, A., Logé, C., de Tauzia, M. L., Ravache, M., Le Guevel, R., Guillouzo, C., ... & Robert, J. M. (2012). Synthesis and biological evaluation of new 5-benzylated 4-oxo-3, 4-dihydro-5H-pyridazino [4, 5-b] indoles as PI3Kα inhibitors. European journal of medicinal chemistry, 57, 225-233.
  • Cao, X., Chen, Y., Zhang, Y., Lan, Y., Zhang, J., Xu, X., ... & Zhang, G. (2016). Synthesis and biological evaluation of novel σ1 receptor ligands for treating neuropathic pain: 6-hydroxypyridazinones. Journal of medicinal chemistry, 59(7), 2942-2961.
  • Chintakunta, V. K., Akella, V., Vedula, M. S., Mamnoor, P. K., Mishra, P., Casturi, S. R., ... & Rajagopalan, R. (2002). 3-O-Substituted benzyl pyridazinone derivatives as COX inhibitors. European journal of medicinal chemistry, 37(4), 339-347.
  • Corsano, S., Strappaghetti, G., Leonardi, A., Rhazri, K., & Barbaro, R. (1997). New 3 (2H)-pyridazinone derivatives: synthesis and affinity towards α1AR subtypes and 5HT1A receptors. European journal of medicinal chemistry, 32(4), 339-342.
  • Costas, T., Besada, P., Piras, A., Acevedo, L., Yañez, M., Orallo, F., ... & Terán, C. (2010). New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorganic & medicinal chemistry letters, 20(22), 6624-6627.
  • Cunha, A. C., Figueiredo, J. M., Tributino, J. L., Miranda, A. L., Castro, H. C., Zingali, R. B., ... & Barreiro, E. J. (2003). Antiplatelet properties of novel N-substituted-phenyl-1, 2, 3-triazole-4-acylhydrazone derivatives. Bioorganic & medicinal chemistry, 11(9), 2051-2059.
  • Dal Piaz, V., Giovannoni, M. P., Castellana, C., Palacios, J. M., Beleta, J., Doménech, T., & Segarra, V. (1998). Heterocyclic-fused 3 (2H)-pyridazinones as potent and selective PDE IV inhibitors: Further structure-activity relationships and molecular modelling studies. European journal of medicinal chemistry, 33(10), 789-797.
  • Dubey, S., & Bhosle, P. A. (2015). Pyridazinone: an important element of pharmacophore possessing broad spectrum of activity. Medicinal Chemistry Research, 24(10), 3579-3598.
  • Dundar, Y., Kuyrukcu, O., Eren, G., Deniz, F. S. S., Onkol, T., & Orhan, I. E. (2019). Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorganic Chemistry, 92, 103304.
  • Fitton, A., & Brogden, R. N. (1994). Pimobendan. Drugs & aging, 4(5), 417-441.
  • Floresta, G., Crocetti, L., Giovannoni, M. P., Biagini, P., & Cilibrizzi, A. (2020). Repurposing strategies on pyridazinone-based series by pharmacophore-and structure-driven screening. Journal of enzyme inhibition and medicinal chemistry, 35(1), 1137-1144.
  • Gökçe, M., Şahin, M. F., Kuepeli, E., & Yeşilada, E. (2004). Synthesis and evaluation of the analgesic and anti-inflammatory activity of new 3 (2H)-pyridazinone derivatives. Arzneimittelforschung, 54(07), 396-401.
  • Gong, J., Zheng, Y., Wang, Y., Sheng, W., Li, Y., Liu, X., ... & Zhen, Y. (2018). A new compound of thiophenylated pyridazinone IMB5043 showing potent antitumor efficacy through ATM-Chk2 pathway. Plos one, 13(2), e0191984.
  • Heinisch, G., & Frank, H. (1990). 1 Pharmacologically Active Pyridazine Derivatives. Part 1. Progress in medicinal chemistry, 27, 1-49.
  • Husain, A., Drabu, S., Kumar, N., Alam, M. M., & Ahmad, A. (2011). Synthesis and biological evaluation of some new pyridazinone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(5), 742-748.
  • Imramovský, A., Pejchal, V., Štěpánková, Š., Vorčáková, K., Jampílek, J., Vančo, J., ... & Trejtnar, F. (2013). Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo [d] thiazoles as cholinesterase inhibitors. Bioorganic & medicinal chemistry, 21(7), 1735-1748.
  • Imran, M., & Abida, A. (2016). 6-(4-Aminophenyl)-4, 5-dihydro-3 (2H)-pyridazinone-an important chemical moiety for development of cardioactive agents: A review. Tropical Journal of Pharmaceutical Research, 15(7), 1579-1590.
  • Ismail, M. M., Soliman, D. H., Elmoniem, M. H. A., & Jaleel, G. A. (2021). Synthesis, Molecular Modeling of Novel Substituted Pyridazinones and their Vasorelaxant Activities. Medicinal Chemistry, 17(2), 171-186.
  • Kaşıkçıoğlu, H. A., & Cam, N. (2006). A review of levosimendan in the treatment of heart failure. Vascular health and risk management, 2(4), 389.
  • Katritzky, A.R., Boulton, A.J. (1968). Advances in Heterocyclic Chemistry (vol. 9). New York, London: Academic Press.
  • Kilic, B., Erdogan, M., Gulcan, H. O., Aksakal, F., Oruklu, N., Bagriacik, E. U., & Dogruer, D. S. (2019). Design, Synthesis and Investigation of New Diphenyl Substituted Pyridazinone Derivatives as Both Cholinesterase and Aβ-Aggregation Inhibitors. Medicinal Chemistry, 15(1), 59-76.
  • Lapinski, L., Fulara, J., Czerminski, R., & Nowak, M. J. (1990). Infrared matrix isolation and ab initio studies of 3 (2H)-pyridazinone and photoproduced 3-hyroxypyridazine. Spectrochimica Acta Part A: Molecular Spectroscopy, 46(7), 1087-1096.
  • Lenhert, A.G., Castle, R.N. (1973). Chemistry of Heterocyclic Compounds: Pyridazines, (vol. 28). Physical Properties of Pyridazines. John Wiley & Sons.
  • Linholter, S., Krıstensen, A., Rosendrn, R., Nielsen, S. E., & Kaaber, H. (1961). Pyridazine Studies. Acta Chemıca Scandınavıca, 15(196l), 1660-1666.
  • Matrai, E. (1997). Infrared spectroscopic studies on polarity and tautomerism of 3 (2H)-pyridazinone derivatives. Journal of molecular structure, 408, 467-472.
  • Nagle, P., Pawar, Y., Sonawane, A., Bhosale, S., & More, D. (2014). Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents. Medicinal Chemistry Research, 23(2), 918-926.
  • Önkol, T., Gökçe, M., Orhan, İ., & Kaynak, F. (2013). Design, synthesis and evaluation of some novel 3 (2H)-pyridazinone-2-yl acetohydrazides as acetylcholinesterase and butyrylcholnesterase inhibitors. Organic Communications, 6(1), 55.
  • Özçelik-Erdoğan, B. (2008). Piridazinon türevi antiplatelet etkili olabilecek bileşiklerin sentezi ve aktivitelerinin incelenmesi. PhD Thesis. Gazi University, Ankara.
  • Özçelik, A. B., Gokçe, M., Orhan, I., Kaynak, F., & Şahin, M. F. (2010). Synthesis and antimicrobial, acetylcholinesterase and butyrylcholinesterase inhibitory activities of novel ester and hydrazide derivatives of 3 (2H)-pyridazinone. Arzneimittelforschung, 60(07), 452-458.
  • Özçelik, A. B., Özdemir, Z., Sari, S., Utku, S., & Uysal, M. (2019). A new series of pyridazinone derivatives as cholinesterases inhibitors: synthesis, in vitro activity and molecular modeling studies. Pharmacological Reports, 71(6), 1253-1263.
  • Özdemir, Z., Yılmaz, H., Sarı, S., Karakurt, A., Şenol, F. S., & Uysal, M. (2017). Design, synthesis, and molecular modeling of new 3 (2H)-pyridazinone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Medicinal Chemistry Research, 26(10), 2293-2308.
  • Özdemir, Z., Alagöz, M., Akdemir, A., Özçelik, A., Özçelik, B., & Uysal, M. (2019). Studies on a novel series of 3 (2H)-pyridazinones: Synthesis, molecular modelling, antimicrobial activity. Journal of Research in Pharmacy, 23(5).b
  • Özdemir, Z., Başak-Türkmen, N., Ayhan, İ., Çiftçi, O., & Uysal, M. (2019). Synthesis of New 6-[4-(2-Fluorophenylpiperazine-1-YL)]-3 (2H)-Pyridazinone-2-Acethyl-2-(Substitutedbenzal) Hydrazone Derivatives and Evulation of Their Cytotoxic Effects in Liver and Colon Cancer Cell Lines. Pharmaceutical Chemistry Journal, 52(11), 923-929..a
  • Özdemir, Z., Utku, S., Mathew, B., Carradori, S., Orlando, G., Di Simone, S., ... & Ferrante, C. (2020). Synthesis and biological evaluation of new 3 (2 H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1100-1109.
  • Özdemir, Z., Utku, S., Mathew, B., Carradori, S., Orlando, G., Di Simone, S., ... & Ferrante, C. (2020). Synthesis and biological evaluation of new 3 (2 H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1100-1109.
  • Rathish, I. G., Javed, K., Bano, S., Ahmad, S., Alam, M. S., & Pillai, K. K. (2009). Synthesis and blood glucose lowering effect of novel pyridazinone substituted benzenesulfonylurea derivatives. European journal of medicinal chemistry, 44(6), 2673-2678.
  • Rathish, I. G., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Akhter, M., ... & Samim, M. (2012). Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3 (2H)-ones. European journal of medicinal chemistry, 49, 304-309.
  • Sallam, M. S., El-Hashash, M. A., & Guirguis, D. B. (2016). Synthesis and antimicrobial activity of some novel substituted pyridazin-3 (2H)-ones containing 1, 3, 4-thiadiazole moiety. Medicinal Chemistry Research, 25(2), 369-380.
  • Sharma, B., Verma, A., Sharma, U. K., & Prajapati, S. (2014). Efficient synthesis, anticonvulsant and muscle relaxant activities of new 2-((5-amino-1, 3, 4-thiadiazol-2-yl) methyl)-6-phenyl-4, 5-dihydropyridazin-3 (2H)-one derivatives. Medicinal Chemistry Research, 23(1), 146-157.
  • Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular medicine reports, 20(2), 1479-1487.
  • Siddiqui, A.A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M., Pal, P. (2011). Triazole incorporated pyridazinones as a new class of antihypertensive agents: Design, synthesis and in vivo screening. Bioorg. Med. Chem. Lett. 21, 1023–1026.
  • Sönmez, M., Berber, İ., & Akbaş, E. (2006). Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. European Journal of Medicinal Chemistry, 41(1), 101-105.
  • Sukuroglu, M., Onkol, T., Onurdağ, F. K., Akalın, G., & Şahin, M. F. (2012). Synthesis and in vitro biological activity of new 4, 6-disubstituted 3 (2H)-pyridazinone-acetohydrazide derivatives. Zeitschrift für Naturforschung C, 67(5-6), 257-265.
  • Thota, S., & Bansal, R. (2010). Synthesis of new pyridazinone derivatives as platelet aggregation inhibitors. Medicinal chemistry research, 19(8), 808-816.
Year 2022, Volume: 4 Issue: 2, 61 - 79, 31.08.2022

Abstract

References

  • Ahmad, S., Rathish, I. G., Bano, S., Alam, M. S., & Javed, K. (2010). Synthesis and biological evaluation of some novel 6-aryl-2-(p-sulfamylphenyl)-4, 5-dihydropyridazin-3 (2H)-ones as anti-cancer, antimicrobial, and anti-inflammatory agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 25(2), 266-271.
  • Ahmed, E. M., Kassab, A. E., El-Malah, A. A., & Hassan, M. S. (2019). Synthesis and biological evaluation of pyridazinone derivatives as selective COX-2 inhibitors and potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 171, 25-37.
  • Akhtar, W., Shaquiquzzaman, M., Akhter, M., Verma, G., Khan, M. F., & Alam, M. M. (2016). The therapeutic journey of pyridazinone. European journal of medicinal chemistry, 123, 256-281.
  • Alagöz, M., Özdemir, Z., & Özçelik, A. (2019). Molecular Modelling Studies of Pyridazinone Derivatives as Antibutyrylcholinesterases. International Journal of Pharmacy and Chemistry, 5(3), 206-231.
  • Allerton, C. M., Andrews, M. D., Blagg, J., Ellis, D., Evrard, E., Green, M. P., ... & Watson, L. (2009). BaytaşDesign and synthesis of pyridazinone-based 5-HT2C agonists. Bioorganic & medicinal chemistry letters, 19(19), 5791-5795.
  • Al-Tel, T. H. (2010). Design and synthesis of novel tetrahydro-2H-Pyrano [3, 2-c] Pyridazin-3 (6H)-one derivatives as potential anticancer agents. European journal of medicinal chemistry, 45(12), 5724-5731.
  • Asif, M. (2019). A Review on Pyridazinone Ring Containing Various Cardioactive Agents. Journal of Chemical Reviews, 1(1), 66-77.
  • Asif, M., & Alam, M. (2020). Study of heterocyclic-fused pyridazinone analogues having phosphodiestrase-IV inhibitor activities as anti-inflammatory agents. Journal of Medicinal and Chemical Sciences, 3(2), 109-117.
  • Bansal, R., & Thota, S. (2013). Pyridazin-3 (2H)-ones: the versatile pharmacophore of medicinal significance. Medicinal Chemistry Research, 22(6), 2539-2552.
  • Barberot, C., Moniot, A., Allart-Simon, I., Malleret, L., Yegorova, T., Laronze-Cochard, M., ... & Gérard, S. (2018). Synthesis and biological evaluation of pyridazinone derivatives as potential anti-inflammatory agents. European Journal of Medicinal Chemistry, 146, 139-146.
  • Baytaş, S., Inceler, N., Mavaneh, K. F., Uludağ, M. O., Abacıoğlu, N., & Gökçe, M. (2012). Synthesis Of Antipyrine/Pyridazinone Hybrids And İnvestigation Of Their İn Vivo Analgesic And Anti-İnflammatory Activities. Turkish Journal Of Chemistry, 36(5), 734-748.
  • Betti, L., Zanelli, M., Giannaccini, G., Manetti, F., Schenone, S., & Strappaghetti, G. (2006). Synthesis of new piperazine–pyridazinone derivatives and their binding affinity toward α1-, α2-adrenergic and 5-HT1A serotoninergic receptors. Bioorganic & Medicinal Chemistry, 14(8), 2828-2836.
  • Bruel, A., Logé, C., de Tauzia, M. L., Ravache, M., Le Guevel, R., Guillouzo, C., ... & Robert, J. M. (2012). Synthesis and biological evaluation of new 5-benzylated 4-oxo-3, 4-dihydro-5H-pyridazino [4, 5-b] indoles as PI3Kα inhibitors. European journal of medicinal chemistry, 57, 225-233.
  • Cao, X., Chen, Y., Zhang, Y., Lan, Y., Zhang, J., Xu, X., ... & Zhang, G. (2016). Synthesis and biological evaluation of novel σ1 receptor ligands for treating neuropathic pain: 6-hydroxypyridazinones. Journal of medicinal chemistry, 59(7), 2942-2961.
  • Chintakunta, V. K., Akella, V., Vedula, M. S., Mamnoor, P. K., Mishra, P., Casturi, S. R., ... & Rajagopalan, R. (2002). 3-O-Substituted benzyl pyridazinone derivatives as COX inhibitors. European journal of medicinal chemistry, 37(4), 339-347.
  • Corsano, S., Strappaghetti, G., Leonardi, A., Rhazri, K., & Barbaro, R. (1997). New 3 (2H)-pyridazinone derivatives: synthesis and affinity towards α1AR subtypes and 5HT1A receptors. European journal of medicinal chemistry, 32(4), 339-342.
  • Costas, T., Besada, P., Piras, A., Acevedo, L., Yañez, M., Orallo, F., ... & Terán, C. (2010). New pyridazinone derivatives with vasorelaxant and platelet antiaggregatory activities. Bioorganic & medicinal chemistry letters, 20(22), 6624-6627.
  • Cunha, A. C., Figueiredo, J. M., Tributino, J. L., Miranda, A. L., Castro, H. C., Zingali, R. B., ... & Barreiro, E. J. (2003). Antiplatelet properties of novel N-substituted-phenyl-1, 2, 3-triazole-4-acylhydrazone derivatives. Bioorganic & medicinal chemistry, 11(9), 2051-2059.
  • Dal Piaz, V., Giovannoni, M. P., Castellana, C., Palacios, J. M., Beleta, J., Doménech, T., & Segarra, V. (1998). Heterocyclic-fused 3 (2H)-pyridazinones as potent and selective PDE IV inhibitors: Further structure-activity relationships and molecular modelling studies. European journal of medicinal chemistry, 33(10), 789-797.
  • Dubey, S., & Bhosle, P. A. (2015). Pyridazinone: an important element of pharmacophore possessing broad spectrum of activity. Medicinal Chemistry Research, 24(10), 3579-3598.
  • Dundar, Y., Kuyrukcu, O., Eren, G., Deniz, F. S. S., Onkol, T., & Orhan, I. E. (2019). Novel pyridazinone derivatives as butyrylcholinesterase inhibitors. Bioorganic Chemistry, 92, 103304.
  • Fitton, A., & Brogden, R. N. (1994). Pimobendan. Drugs & aging, 4(5), 417-441.
  • Floresta, G., Crocetti, L., Giovannoni, M. P., Biagini, P., & Cilibrizzi, A. (2020). Repurposing strategies on pyridazinone-based series by pharmacophore-and structure-driven screening. Journal of enzyme inhibition and medicinal chemistry, 35(1), 1137-1144.
  • Gökçe, M., Şahin, M. F., Kuepeli, E., & Yeşilada, E. (2004). Synthesis and evaluation of the analgesic and anti-inflammatory activity of new 3 (2H)-pyridazinone derivatives. Arzneimittelforschung, 54(07), 396-401.
  • Gong, J., Zheng, Y., Wang, Y., Sheng, W., Li, Y., Liu, X., ... & Zhen, Y. (2018). A new compound of thiophenylated pyridazinone IMB5043 showing potent antitumor efficacy through ATM-Chk2 pathway. Plos one, 13(2), e0191984.
  • Heinisch, G., & Frank, H. (1990). 1 Pharmacologically Active Pyridazine Derivatives. Part 1. Progress in medicinal chemistry, 27, 1-49.
  • Husain, A., Drabu, S., Kumar, N., Alam, M. M., & Ahmad, A. (2011). Synthesis and biological evaluation of some new pyridazinone derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 26(5), 742-748.
  • Imramovský, A., Pejchal, V., Štěpánková, Š., Vorčáková, K., Jampílek, J., Vančo, J., ... & Trejtnar, F. (2013). Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo [d] thiazoles as cholinesterase inhibitors. Bioorganic & medicinal chemistry, 21(7), 1735-1748.
  • Imran, M., & Abida, A. (2016). 6-(4-Aminophenyl)-4, 5-dihydro-3 (2H)-pyridazinone-an important chemical moiety for development of cardioactive agents: A review. Tropical Journal of Pharmaceutical Research, 15(7), 1579-1590.
  • Ismail, M. M., Soliman, D. H., Elmoniem, M. H. A., & Jaleel, G. A. (2021). Synthesis, Molecular Modeling of Novel Substituted Pyridazinones and their Vasorelaxant Activities. Medicinal Chemistry, 17(2), 171-186.
  • Kaşıkçıoğlu, H. A., & Cam, N. (2006). A review of levosimendan in the treatment of heart failure. Vascular health and risk management, 2(4), 389.
  • Katritzky, A.R., Boulton, A.J. (1968). Advances in Heterocyclic Chemistry (vol. 9). New York, London: Academic Press.
  • Kilic, B., Erdogan, M., Gulcan, H. O., Aksakal, F., Oruklu, N., Bagriacik, E. U., & Dogruer, D. S. (2019). Design, Synthesis and Investigation of New Diphenyl Substituted Pyridazinone Derivatives as Both Cholinesterase and Aβ-Aggregation Inhibitors. Medicinal Chemistry, 15(1), 59-76.
  • Lapinski, L., Fulara, J., Czerminski, R., & Nowak, M. J. (1990). Infrared matrix isolation and ab initio studies of 3 (2H)-pyridazinone and photoproduced 3-hyroxypyridazine. Spectrochimica Acta Part A: Molecular Spectroscopy, 46(7), 1087-1096.
  • Lenhert, A.G., Castle, R.N. (1973). Chemistry of Heterocyclic Compounds: Pyridazines, (vol. 28). Physical Properties of Pyridazines. John Wiley & Sons.
  • Linholter, S., Krıstensen, A., Rosendrn, R., Nielsen, S. E., & Kaaber, H. (1961). Pyridazine Studies. Acta Chemıca Scandınavıca, 15(196l), 1660-1666.
  • Matrai, E. (1997). Infrared spectroscopic studies on polarity and tautomerism of 3 (2H)-pyridazinone derivatives. Journal of molecular structure, 408, 467-472.
  • Nagle, P., Pawar, Y., Sonawane, A., Bhosale, S., & More, D. (2014). Docking simulation, synthesis and biological evaluation of novel pyridazinone containing thymol as potential antimicrobial agents. Medicinal Chemistry Research, 23(2), 918-926.
  • Önkol, T., Gökçe, M., Orhan, İ., & Kaynak, F. (2013). Design, synthesis and evaluation of some novel 3 (2H)-pyridazinone-2-yl acetohydrazides as acetylcholinesterase and butyrylcholnesterase inhibitors. Organic Communications, 6(1), 55.
  • Özçelik-Erdoğan, B. (2008). Piridazinon türevi antiplatelet etkili olabilecek bileşiklerin sentezi ve aktivitelerinin incelenmesi. PhD Thesis. Gazi University, Ankara.
  • Özçelik, A. B., Gokçe, M., Orhan, I., Kaynak, F., & Şahin, M. F. (2010). Synthesis and antimicrobial, acetylcholinesterase and butyrylcholinesterase inhibitory activities of novel ester and hydrazide derivatives of 3 (2H)-pyridazinone. Arzneimittelforschung, 60(07), 452-458.
  • Özçelik, A. B., Özdemir, Z., Sari, S., Utku, S., & Uysal, M. (2019). A new series of pyridazinone derivatives as cholinesterases inhibitors: synthesis, in vitro activity and molecular modeling studies. Pharmacological Reports, 71(6), 1253-1263.
  • Özdemir, Z., Yılmaz, H., Sarı, S., Karakurt, A., Şenol, F. S., & Uysal, M. (2017). Design, synthesis, and molecular modeling of new 3 (2H)-pyridazinone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Medicinal Chemistry Research, 26(10), 2293-2308.
  • Özdemir, Z., Alagöz, M., Akdemir, A., Özçelik, A., Özçelik, B., & Uysal, M. (2019). Studies on a novel series of 3 (2H)-pyridazinones: Synthesis, molecular modelling, antimicrobial activity. Journal of Research in Pharmacy, 23(5).b
  • Özdemir, Z., Başak-Türkmen, N., Ayhan, İ., Çiftçi, O., & Uysal, M. (2019). Synthesis of New 6-[4-(2-Fluorophenylpiperazine-1-YL)]-3 (2H)-Pyridazinone-2-Acethyl-2-(Substitutedbenzal) Hydrazone Derivatives and Evulation of Their Cytotoxic Effects in Liver and Colon Cancer Cell Lines. Pharmaceutical Chemistry Journal, 52(11), 923-929..a
  • Özdemir, Z., Utku, S., Mathew, B., Carradori, S., Orlando, G., Di Simone, S., ... & Ferrante, C. (2020). Synthesis and biological evaluation of new 3 (2 H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1100-1109.
  • Özdemir, Z., Utku, S., Mathew, B., Carradori, S., Orlando, G., Di Simone, S., ... & Ferrante, C. (2020). Synthesis and biological evaluation of new 3 (2 H)-pyridazinone derivatives as non-toxic anti-proliferative compounds against human colon carcinoma HCT116 cells. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1100-1109.
  • Rathish, I. G., Javed, K., Bano, S., Ahmad, S., Alam, M. S., & Pillai, K. K. (2009). Synthesis and blood glucose lowering effect of novel pyridazinone substituted benzenesulfonylurea derivatives. European journal of medicinal chemistry, 44(6), 2673-2678.
  • Rathish, I. G., Javed, K., Ahmad, S., Bano, S., Alam, M. S., Akhter, M., ... & Samim, M. (2012). Synthesis and evaluation of anticancer activity of some novel 6-aryl-2-(p-sulfamylphenyl)-pyridazin-3 (2H)-ones. European journal of medicinal chemistry, 49, 304-309.
  • Sallam, M. S., El-Hashash, M. A., & Guirguis, D. B. (2016). Synthesis and antimicrobial activity of some novel substituted pyridazin-3 (2H)-ones containing 1, 3, 4-thiadiazole moiety. Medicinal Chemistry Research, 25(2), 369-380.
  • Sharma, B., Verma, A., Sharma, U. K., & Prajapati, S. (2014). Efficient synthesis, anticonvulsant and muscle relaxant activities of new 2-((5-amino-1, 3, 4-thiadiazol-2-yl) methyl)-6-phenyl-4, 5-dihydropyridazin-3 (2H)-one derivatives. Medicinal Chemistry Research, 23(1), 146-157.
  • Sharma, K. (2019). Cholinesterase inhibitors as Alzheimer's therapeutics. Molecular medicine reports, 20(2), 1479-1487.
  • Siddiqui, A.A., Mishra, R., Shaharyar, M., Husain, A., Rashid, M., Pal, P. (2011). Triazole incorporated pyridazinones as a new class of antihypertensive agents: Design, synthesis and in vivo screening. Bioorg. Med. Chem. Lett. 21, 1023–1026.
  • Sönmez, M., Berber, İ., & Akbaş, E. (2006). Synthesis, antibacterial and antifungal activity of some new pyridazinone metal complexes. European Journal of Medicinal Chemistry, 41(1), 101-105.
  • Sukuroglu, M., Onkol, T., Onurdağ, F. K., Akalın, G., & Şahin, M. F. (2012). Synthesis and in vitro biological activity of new 4, 6-disubstituted 3 (2H)-pyridazinone-acetohydrazide derivatives. Zeitschrift für Naturforschung C, 67(5-6), 257-265.
  • Thota, S., & Bansal, R. (2010). Synthesis of new pyridazinone derivatives as platelet aggregation inhibitors. Medicinal chemistry research, 19(8), 808-816.
There are 56 citations in total.

Details

Primary Language English
Subjects Pharmacology and Pharmaceutical Sciences
Journal Section Araştırma Makalesi
Authors

Zeynep Özdemir 0000-0003-4559-2305

Mehmet Abdullah Alagöz 0000-0001-5190-7196

Gülnur Arslan 0000-0001-9054-7437

Azime Berna Özçelik 0000-0002-3160-5753

Publication Date August 31, 2022
Published in Issue Year 2022 Volume: 4 Issue: 2

Cite

APA Özdemir, Z., Alagöz, M. A., Arslan, G., Özçelik, A. B. (2022). Pharmacologically Active Molecules Bearing the Pyridazinone Ring as Main Scaffold. Journal of Gazi University Health Sciences Institute, 4(2), 61-79.