BibTex RIS Cite

CSSES-MODULES and CSSES-RINGS

Year 2005, Volume: 18 Issue: 3, 381 - 390, 13.08.2010

Abstract

ABSTRACT

We study the structure of semiperfect, CS-Modules with essential socle. We call the module M CSSES-module if M is semiperfect, CS-module with essential socle. We will call the ring R right CSSES-ring if the right R-module RR is CSSESmodule. In this note among others we prove that [i] If R is right CF and left GINring, then R is QF-ring if and only if R is right CS-ring if and only R is CSSESring. [ii] Every left Kasch right CF-ring is right CSSES-ring. [iii] If R is left Kasch and right IN-ring with equal left and right socles, then R is CSSES-ring.

References

  • Anderson F. W. and Fuller K. R., Rings and Categories of Modules, Springer-Verlag , New York, (1974).
  • Camillo V., Nicholson W. K. and Yousif M. F., “Ikeda-Nakayama Rings”, J.Algebra, 226, 001-1010, (2000).
  • Chen J., Ding N. and Yousif M. F., “On a Generalization of injective Rings”, Comm, Algebra , 31(10), 5105-5116, (2003).
  • Chen J. and Ding N., “General Principally Injective Rings”, Comm. Algebra, 27(5), 2097-2116, (1999).
  • Goodearl K. R., Ring Theory : Nonsingular Rings and Modules, Monographs on Pure and Applied Mathematics Vol. 33., Dekker, New York, (1976).
  • Hajarnavis C. R. and Northon N. C., “On Dual Rings and Their Modules”, J.Algebra 93, 253-266, (1985).
  • Ikeda M. and Nakayama T., “On Some Characteristic Properties of Quasi-Frobenius and Regular Rings”, Proc. Am. Math. Soc. 5, 15-19, (1954).
  • Jain S. K. and Lopez-Permouth S. R., “Rings Whose Cyclics are Essentially Embeddable in Projectives”, J. Algebra. , 257-269, (1990).
  • John B., “Annihilator Conditions in Noetherian Rings”, J. Algebra 49, 222-224, (1977).
  • Mohamed S. H. and Müller B. J., Continuous and Discrete Modules, L.M.S. Lecture Notes Vol. 147. Cambridge University Press, Cambridge, UK, (1990).
  • Nam S. B., Kim N. K. and Kim J. Y., “On Simple Singular GP-injective Modules”, Comm. Algebra, 27(5), 1683- , (1999).
  • Nicholson W. K. and Yousif M. F., “On Perfect Simple-injective Rings”, Proc. Am. Math. Soc.,125, 979-985, (1997).
  • Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge University Press, Cambridge Tracts in Mathematics. 158, (2003).
  • Osofsky B., “a Generalization of Quasi-Frobenius Rings”, J. Algebra ,4, 373-387, (1966).
  • Pardo J. L. G. and Asensio P. A. G., “Rings with Finite Essential Socle”, Proc. Am. Math. Soc. ,125, 971-977, (1997).
  • Pardo J.L.G. and Asensio P.A.G., “Essential Embedding of Cyclic Modules in Projetives”, Trans. Am. Math. Soc. , , 4343-4353, (1997).
  • Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach: Readiding, MA, (1991).
  • Wisbauer R. ,Yousif M. F. and Zhou Y., “Ikeda-Nakayama Modules”, Beitraege zur Algebra und Geometrie , 43(1), 119, (2002).
  • Yousif M. F and Zhou Y.,”Semiregular, Semiperfect and Perfect Rings Relative to an Ideal”, Rocky M. Jour. Math., (4), (2002).
  • Zhou Y.,”Generalizations of Perfect, Semiperfect, and Semiregular Rings”, Algebra Colloquium, 7:3, 305-318, (2000).
Year 2005, Volume: 18 Issue: 3, 381 - 390, 13.08.2010

Abstract

Bu çalışmada has desteğee sahip yarıtam CS-modüllerin yapısını araştıracağız. Eğer M modülü has desteğe sahip yarıtam CS-modülse M modülüne CSSES-modül denir. Sağ R-modül RR CSSES-modül ise R halkasına sağ CSSES-halkası denir. Bu çalışmada, diğer ispatladıklarımız yanında, aşağıdakilari de ispalayacağız: [i] Eğer R halkası sağ CF ise ve sol GIN-halka ise, o zaman R bir QF-halkadır ancak ve ancak R bir sağ CS-halkadır ancak ve ancak R bir sağ CSSES- halkadır. [ii] Her sol Kasch ve sağ CF-halka sağ CSSES-halkadır. [iii] Eğer R sağ ve sol destekleri eşit sol Kasch sağ IN-halka ise , o zaman R CSSES-halkadır

References

  • Anderson F. W. and Fuller K. R., Rings and Categories of Modules, Springer-Verlag , New York, (1974).
  • Camillo V., Nicholson W. K. and Yousif M. F., “Ikeda-Nakayama Rings”, J.Algebra, 226, 001-1010, (2000).
  • Chen J., Ding N. and Yousif M. F., “On a Generalization of injective Rings”, Comm, Algebra , 31(10), 5105-5116, (2003).
  • Chen J. and Ding N., “General Principally Injective Rings”, Comm. Algebra, 27(5), 2097-2116, (1999).
  • Goodearl K. R., Ring Theory : Nonsingular Rings and Modules, Monographs on Pure and Applied Mathematics Vol. 33., Dekker, New York, (1976).
  • Hajarnavis C. R. and Northon N. C., “On Dual Rings and Their Modules”, J.Algebra 93, 253-266, (1985).
  • Ikeda M. and Nakayama T., “On Some Characteristic Properties of Quasi-Frobenius and Regular Rings”, Proc. Am. Math. Soc. 5, 15-19, (1954).
  • Jain S. K. and Lopez-Permouth S. R., “Rings Whose Cyclics are Essentially Embeddable in Projectives”, J. Algebra. , 257-269, (1990).
  • John B., “Annihilator Conditions in Noetherian Rings”, J. Algebra 49, 222-224, (1977).
  • Mohamed S. H. and Müller B. J., Continuous and Discrete Modules, L.M.S. Lecture Notes Vol. 147. Cambridge University Press, Cambridge, UK, (1990).
  • Nam S. B., Kim N. K. and Kim J. Y., “On Simple Singular GP-injective Modules”, Comm. Algebra, 27(5), 1683- , (1999).
  • Nicholson W. K. and Yousif M. F., “On Perfect Simple-injective Rings”, Proc. Am. Math. Soc.,125, 979-985, (1997).
  • Nicholson W. K. and Yousif M. F., Quasi-Frobenius Rings, Cambridge University Press, Cambridge Tracts in Mathematics. 158, (2003).
  • Osofsky B., “a Generalization of Quasi-Frobenius Rings”, J. Algebra ,4, 373-387, (1966).
  • Pardo J. L. G. and Asensio P. A. G., “Rings with Finite Essential Socle”, Proc. Am. Math. Soc. ,125, 971-977, (1997).
  • Pardo J.L.G. and Asensio P.A.G., “Essential Embedding of Cyclic Modules in Projetives”, Trans. Am. Math. Soc. , , 4343-4353, (1997).
  • Wisbauer R., Foundations of Module and Ring Theory, Gordon and Breach: Readiding, MA, (1991).
  • Wisbauer R. ,Yousif M. F. and Zhou Y., “Ikeda-Nakayama Modules”, Beitraege zur Algebra und Geometrie , 43(1), 119, (2002).
  • Yousif M. F and Zhou Y.,”Semiregular, Semiperfect and Perfect Rings Relative to an Ideal”, Rocky M. Jour. Math., (4), (2002).
  • Zhou Y.,”Generalizations of Perfect, Semiperfect, and Semiregular Rings”, Algebra Colloquium, 7:3, 305-318, (2000).
There are 20 citations in total.

Details

Primary Language English
Journal Section Mathematics
Authors

Abdurzak Leghwel This is me

Abdullah Harmancı

Publication Date August 13, 2010
Published in Issue Year 2005 Volume: 18 Issue: 3

Cite

APA Leghwel, A., & Harmancı, A. (2010). CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science, 18(3), 381-390.
AMA Leghwel A, Harmancı A. CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science. August 2010;18(3):381-390.
Chicago Leghwel, Abdurzak, and Abdullah Harmancı. “CSSES-MODULES and CSSES-RINGS”. Gazi University Journal of Science 18, no. 3 (August 2010): 381-90.
EndNote Leghwel A, Harmancı A (August 1, 2010) CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science 18 3 381–390.
IEEE A. Leghwel and A. Harmancı, “CSSES-MODULES and CSSES-RINGS”, Gazi University Journal of Science, vol. 18, no. 3, pp. 381–390, 2010.
ISNAD Leghwel, Abdurzak - Harmancı, Abdullah. “CSSES-MODULES and CSSES-RINGS”. Gazi University Journal of Science 18/3 (August 2010), 381-390.
JAMA Leghwel A, Harmancı A. CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science. 2010;18:381–390.
MLA Leghwel, Abdurzak and Abdullah Harmancı. “CSSES-MODULES and CSSES-RINGS”. Gazi University Journal of Science, vol. 18, no. 3, 2010, pp. 381-90.
Vancouver Leghwel A, Harmancı A. CSSES-MODULES and CSSES-RINGS. Gazi University Journal of Science. 2010;18(3):381-90.