Research Article
BibTex RIS Cite
Year 2015, Volume: 28 Issue: 1, 69 - 73, 23.02.2015

Abstract

References

  • C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1999.
  • I. Altun, C. Çevik, Some common fixed point theorems in vector metric spaces, Filomat, 25(1), (2011), 105-113.
  • C. Çevik, I. Altun, Vector metric spaces and some properties, Topol. Methods Nonlinear Anal., 34(2) (2009), 375-382.
  • C. Çevik, On continuity of functions between vector metric spaces, J. Funct. Spaces, (2014) Article ID 753969, 6 pages.
  • F. Dashiell, A. Hager, M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Can. J. Math. (3) 32 (1980), 657-685.
  • C. J. Everett, Sequence completion of lattice moduls, Duke Math. J. 11 (1944), 109-119.
  • J.L. Krivine, Theoremes de factorisation dans les espaces reticules, Seminaire Maurey-Schwartz (1973- 74), Exposes 22-23, École Polytechnique, Paris.
  • Y. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
  • W. A. J. Luxemburg, A. C. Zaanen, Riesz Space I, North-Holland, Amsterdam, 1971.
  • Zs. Páles, I.-R. Petre, Iterative fixed point theorems in E-metric spaces, Acta Math. Hungar., 140(1-2), (2013) 134-144.
  • F. Papangelou, Order convergence and topological completion of commutative lattice-groups, Math. Annalen 155 (1964), 81-107.
  • I.-R. Petre, Fixed point theorems in vector metric spaces for single-valued operators, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 9 (2011), 59-80.
  • I.-R. Petre, Fixed points for ϕ-contractions in E- Banach spaces, Fixed Point Theory, 13(2), (2012), 623- 640.
  • V. Zaharov, On functions connected with sequential absolute, Cantor completions and classical rings of quotients, Periodica Math. Hungar. 19 (1988), 113-133.

Completion of Vector Metric Spaces

Year 2015, Volume: 28 Issue: 1, 69 - 73, 23.02.2015

Abstract

In this study a completion theorem for vector metric spaces is proved. The completion spaces are defined by means of an equivalence relation obtained by order convergence via the module of the Riesz space E.

References

  • C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis, Springer-Verlag, Berlin, 1999.
  • I. Altun, C. Çevik, Some common fixed point theorems in vector metric spaces, Filomat, 25(1), (2011), 105-113.
  • C. Çevik, I. Altun, Vector metric spaces and some properties, Topol. Methods Nonlinear Anal., 34(2) (2009), 375-382.
  • C. Çevik, On continuity of functions between vector metric spaces, J. Funct. Spaces, (2014) Article ID 753969, 6 pages.
  • F. Dashiell, A. Hager, M. Henriksen, Order-Cauchy completions of rings and vector lattices of continuous functions, Can. J. Math. (3) 32 (1980), 657-685.
  • C. J. Everett, Sequence completion of lattice moduls, Duke Math. J. 11 (1944), 109-119.
  • J.L. Krivine, Theoremes de factorisation dans les espaces reticules, Seminaire Maurey-Schwartz (1973- 74), Exposes 22-23, École Polytechnique, Paris.
  • Y. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
  • W. A. J. Luxemburg, A. C. Zaanen, Riesz Space I, North-Holland, Amsterdam, 1971.
  • Zs. Páles, I.-R. Petre, Iterative fixed point theorems in E-metric spaces, Acta Math. Hungar., 140(1-2), (2013) 134-144.
  • F. Papangelou, Order convergence and topological completion of commutative lattice-groups, Math. Annalen 155 (1964), 81-107.
  • I.-R. Petre, Fixed point theorems in vector metric spaces for single-valued operators, Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity, 9 (2011), 59-80.
  • I.-R. Petre, Fixed points for ϕ-contractions in E- Banach spaces, Fixed Point Theory, 13(2), (2012), 623- 640.
  • V. Zaharov, On functions connected with sequential absolute, Cantor completions and classical rings of quotients, Periodica Math. Hungar. 19 (1988), 113-133.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Cüneyt Çevik

Publication Date February 23, 2015
Published in Issue Year 2015 Volume: 28 Issue: 1

Cite

APA Çevik, C. (2015). Completion of Vector Metric Spaces. Gazi University Journal of Science, 28(1), 69-73.
AMA Çevik C. Completion of Vector Metric Spaces. Gazi University Journal of Science. February 2015;28(1):69-73.
Chicago Çevik, Cüneyt. “Completion of Vector Metric Spaces”. Gazi University Journal of Science 28, no. 1 (February 2015): 69-73.
EndNote Çevik C (February 1, 2015) Completion of Vector Metric Spaces. Gazi University Journal of Science 28 1 69–73.
IEEE C. Çevik, “Completion of Vector Metric Spaces”, Gazi University Journal of Science, vol. 28, no. 1, pp. 69–73, 2015.
ISNAD Çevik, Cüneyt. “Completion of Vector Metric Spaces”. Gazi University Journal of Science 28/1 (February 2015), 69-73.
JAMA Çevik C. Completion of Vector Metric Spaces. Gazi University Journal of Science. 2015;28:69–73.
MLA Çevik, Cüneyt. “Completion of Vector Metric Spaces”. Gazi University Journal of Science, vol. 28, no. 1, 2015, pp. 69-73.
Vancouver Çevik C. Completion of Vector Metric Spaces. Gazi University Journal of Science. 2015;28(1):69-73.