Research Article
BibTex RIS Cite
Year 2015, Volume: 28 Issue: 2, 259 - 263, 22.06.2015

Abstract

References

  • G. M. Mittag-Leffler, Sur la nouvelle function C. R. Acad. Sci. Paris, 137 (1903). ,
  • A. Wiman, Uber den fundamentalsatz in der theorie der funktionen ( ), Acta Math., 29 (1905), 191-201.
  • J. A. Fridy, On statistical convergence, Analysis. 5 (1985), 301-313.
  • H. Fast, Sur la convergence statisque, Colloq. Math., 2 (1951), 241-244.
  • A. R. Freedmanand J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293-305.
  • E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1-2) (1993), 77
  • H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (5) (1995), 1811-1819.
  • M. A. Özarslan and H. Aktuğlu, approximation of generalized Szász-Mirakjan-Beta operators, Appl. Math. Lett., 24 (11) (2011), 1785- 17 -statistical
  • H. Steinhaus, Sur la convergence ordinaire et la convergence asymptique, Colloq. Math., 2 (1951), 73
  • O. Duman and C. Orhan, Rates of -statistical convergence of positive linear operators, Appl. Math. Lett. 18 (12) (2005), 1339-1344.
  • O. Duman and C. Orhan, Rates of -statistical convergence of operators in the space of locally integrable functions, Appl. Math. Lett. 21 (5) (2008), 431-4 M. A. Özarslan,
  • Mittag-Leffler operators, Miskolc Math. Notes, 14 (1) (2013),209-217 -statistical convergence of

Durrmeyer-Type Generalization of Mittag-Leffler Operators

Year 2015, Volume: 28 Issue: 2, 259 - 263, 22.06.2015

Abstract

In this paper, we study Mittag-Leffler operators. We establish moments of these operators and estimate convergence results with the help of classical modulus of continuity. Also we give A-statistical convergence property of the operators D_{n}^{(β)}.

References

  • G. M. Mittag-Leffler, Sur la nouvelle function C. R. Acad. Sci. Paris, 137 (1903). ,
  • A. Wiman, Uber den fundamentalsatz in der theorie der funktionen ( ), Acta Math., 29 (1905), 191-201.
  • J. A. Fridy, On statistical convergence, Analysis. 5 (1985), 301-313.
  • H. Fast, Sur la convergence statisque, Colloq. Math., 2 (1951), 241-244.
  • A. R. Freedmanand J. J. Sember, Densities and summability, Pac. J. Math., 95 (1981), 293-305.
  • E. Kolk, Matrix summability of statistically convergent sequences, Analysis, 13 (1-2) (1993), 77
  • H. I. Miller, A measure theoretical subsequence characterization of statistical convergence, Trans. Am. Math. Soc., 347 (5) (1995), 1811-1819.
  • M. A. Özarslan and H. Aktuğlu, approximation of generalized Szász-Mirakjan-Beta operators, Appl. Math. Lett., 24 (11) (2011), 1785- 17 -statistical
  • H. Steinhaus, Sur la convergence ordinaire et la convergence asymptique, Colloq. Math., 2 (1951), 73
  • O. Duman and C. Orhan, Rates of -statistical convergence of positive linear operators, Appl. Math. Lett. 18 (12) (2005), 1339-1344.
  • O. Duman and C. Orhan, Rates of -statistical convergence of operators in the space of locally integrable functions, Appl. Math. Lett. 21 (5) (2008), 431-4 M. A. Özarslan,
  • Mittag-Leffler operators, Miskolc Math. Notes, 14 (1) (2013),209-217 -statistical convergence of
There are 12 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Mathematics
Authors

Gurhan Icoz

Bayram Cekim

Publication Date June 22, 2015
Published in Issue Year 2015 Volume: 28 Issue: 2

Cite

APA Icoz, G., & Cekim, B. (2015). Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science, 28(2), 259-263.
AMA Icoz G, Cekim B. Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science. June 2015;28(2):259-263.
Chicago Icoz, Gurhan, and Bayram Cekim. “Durrmeyer-Type Generalization of Mittag-Leffler Operators”. Gazi University Journal of Science 28, no. 2 (June 2015): 259-63.
EndNote Icoz G, Cekim B (June 1, 2015) Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science 28 2 259–263.
IEEE G. Icoz and B. Cekim, “Durrmeyer-Type Generalization of Mittag-Leffler Operators”, Gazi University Journal of Science, vol. 28, no. 2, pp. 259–263, 2015.
ISNAD Icoz, Gurhan - Cekim, Bayram. “Durrmeyer-Type Generalization of Mittag-Leffler Operators”. Gazi University Journal of Science 28/2 (June 2015), 259-263.
JAMA Icoz G, Cekim B. Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science. 2015;28:259–263.
MLA Icoz, Gurhan and Bayram Cekim. “Durrmeyer-Type Generalization of Mittag-Leffler Operators”. Gazi University Journal of Science, vol. 28, no. 2, 2015, pp. 259-63.
Vancouver Icoz G, Cekim B. Durrmeyer-Type Generalization of Mittag-Leffler Operators. Gazi University Journal of Science. 2015;28(2):259-63.