Research Article
BibTex RIS Cite

On the Voltage Dependent Series Resistance, Interface Traps, and Conduction Mechanisms in the Al/(Ti-doped DLC)/p-Si/Au Schottky Barrier Diodes (SBDs)

Year 2024, Volume: 11 Issue: 1, 235 - 244, 28.03.2024
https://doi.org/10.54287/gujsa.1405552

Abstract

In this study, Al-(Ti:DLC)-pSi/Au Schottky barrier diode (SBD) was manufactured instead of conventional metal / semiconductor (MS) with and without an interlayer and then several fundamental electrical-characteristics such as ideality factor (n), barrier height B series and shunt resistances (Rs, Rsh), concentration of acceptor atoms (NA), and width of depletion-layer (Wd) were derived from the forward-reverse bias current/voltage (I-V), capacitance and conductance as a function of voltage (C/G-V) data using various calculation-methods. Semi logarithmic IF-VF plot shows a linear behavior at lower-voltages and then departed from linearity as a result of the influence of series resistance/Rs and organic-interlayer. Three linear regions can be seen on the double-logarithmic IF-VF plot. with different slopes (1.28, 3.14, and 1.79) in regions with low, middle, and high forward bias, which are indicated that Ohmic-mechanism, trap-charge-limited-current (TCLC) mechanism, and space-charge-limited-current (SCLC) mechanism, respectively. Energy dependent surface states (Nss) vs (Ess-Ev) profile was also obtained from the Card-Rhoderick method by considering voltage-dependence of n and B and they were grown from the mid-gap energy up to the semiconductor's valance band (Ev). To see the impact of Rs for 1 MHz, the measured C/G-V graphs were amendment. All results are indicated that almost all electrical parameters and conduction mechanism are quite depending on Rs, Nss, and calculation method due the voltage dependent of them.

References

  • Berkün, Ö., Ulusoy, M., Altındal, Ş., & Avar, B. (2023). On frequency and voltage dependent physical characteristics and interface states characterization of the metal semiconductor (MS) structures with (Ti:DLC) interlayer. Physica B: Condensed Matter, 666, 415099. https://doi.org/ 10.1016/j.physb.2023.415099
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589-1601. https://doi.org/ 10.1088/0022-3727/4/10/319/meta
  • Cheung, S. K., & Cheung, N.W. (1986). Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied physics letters, 49(2), 85–87. http://dx.doi.org/10.1063/1.97359
  • Demirezen, S., Altındal, Ş., Kalandaragh Y. A, & Akbaş, A. M. (2022). A comparison of Au/n-Si Schottky diodes (SDs) with/without a nanographite (NG) interfacial layer by considering interlayer, surface states (Nss) and series resistance (Rs) effects. Physica Scripta, 97(5), 055811. https://doi.org/ 10.1088/1402-4896/ac645f
  • Dogan, H. (2022). Parameter estimation of aı/p-si schottky barrier diode using different meta-heuristic optimization techniques. Symmetry, 14(11), 2389. https://doi.org/ 10.3390/sym14112389
  • Güçlü, Ç. Ş. (2023). A Comparison Electronic Specifications of the MS & MPS type Schottky Diodes (SDs) via Utilizing Voltage-Current (V-I) Characteristics. Gazi University Journal of Science Part A: Engineering and Innovation, 10, 62-69. https://doi.org/ 10.54287/gujsa.1212696
  • Lin, Y., Weng, C., Lin, Y., Shiesh, C., & Chen, F. (2013). Effect of C content and calcination temperature on the photocatalytic activity of C doped TiO2 catalyst. Separation and Purification Technology, 116, 114 –123. https://doi.org/10.1016/j.seppur.2013.05.018
  • Nicolian, E. H., & Brews, J. R. (1982). Metal oxide semiconductor MOS physics and technology. A Wiley Interscience Publication, 495-502.‏
  • Reddy, N. N. K., Vattikuti, S. V. P., Verma, V. K., Singh, V. R., Alhammadi, S., Kummara,V.K., Manjunath, V., Dhanalakshmi, M., & Reddy,V. R. M. (2022). Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization based ultraviolet photodetecting sensors fabricated on n-type GaN. Materials Science in Semiconductor Processing, 138, 106297. https://doi.org/10.1016/j.mssp.2021.106297
  • Sharma. M., & Tripathi, S. K. (2013). Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal–semiconductor and metal–insulator–semiconductor diode structures. Applied Physics A, 113, 491-499. https://doi.org/10.1007/s00339-013-7552-3
  • Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. New York, John Wiley & Sons, Inc.
  • Ulusoy, M., Badali,Y., Pirgholi Givi, G., Azizian Kalandaragh,Y., & Altındal, Ş. (2023). The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface. Synthetic Metals, 292, 11343. https://doi.org/ 10.1016/j.synthmet.2022.117243
  • Yerişkin, S. A., Balbaşı, M., & Orak, İ. (2017). The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. Journal of Materials Science: Materials in Electronics, 28, 14040–14048. https://doi.org/ 10.1007/s10854-017-7255-1
  • Zeyrek, S. (2015).The effect of interface states and series resistance on current-voltage characteristics in (MIS) Schottky Diodes. Afyon Kocatepe University Journal of Science & Engineering, 15(2), 021101, 1-9. https://doi.org/ 10.5578/fmbd.9657
Year 2024, Volume: 11 Issue: 1, 235 - 244, 28.03.2024
https://doi.org/10.54287/gujsa.1405552

Abstract

References

  • Berkün, Ö., Ulusoy, M., Altındal, Ş., & Avar, B. (2023). On frequency and voltage dependent physical characteristics and interface states characterization of the metal semiconductor (MS) structures with (Ti:DLC) interlayer. Physica B: Condensed Matter, 666, 415099. https://doi.org/ 10.1016/j.physb.2023.415099
  • Card, H. C., & Rhoderick, E. H. (1971). Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. Journal of Physics D: Applied Physics, 4(10), 1589-1601. https://doi.org/ 10.1088/0022-3727/4/10/319/meta
  • Cheung, S. K., & Cheung, N.W. (1986). Extraction of Schottky diode parameters from forward current-voltage characteristics. Applied physics letters, 49(2), 85–87. http://dx.doi.org/10.1063/1.97359
  • Demirezen, S., Altındal, Ş., Kalandaragh Y. A, & Akbaş, A. M. (2022). A comparison of Au/n-Si Schottky diodes (SDs) with/without a nanographite (NG) interfacial layer by considering interlayer, surface states (Nss) and series resistance (Rs) effects. Physica Scripta, 97(5), 055811. https://doi.org/ 10.1088/1402-4896/ac645f
  • Dogan, H. (2022). Parameter estimation of aı/p-si schottky barrier diode using different meta-heuristic optimization techniques. Symmetry, 14(11), 2389. https://doi.org/ 10.3390/sym14112389
  • Güçlü, Ç. Ş. (2023). A Comparison Electronic Specifications of the MS & MPS type Schottky Diodes (SDs) via Utilizing Voltage-Current (V-I) Characteristics. Gazi University Journal of Science Part A: Engineering and Innovation, 10, 62-69. https://doi.org/ 10.54287/gujsa.1212696
  • Lin, Y., Weng, C., Lin, Y., Shiesh, C., & Chen, F. (2013). Effect of C content and calcination temperature on the photocatalytic activity of C doped TiO2 catalyst. Separation and Purification Technology, 116, 114 –123. https://doi.org/10.1016/j.seppur.2013.05.018
  • Nicolian, E. H., & Brews, J. R. (1982). Metal oxide semiconductor MOS physics and technology. A Wiley Interscience Publication, 495-502.‏
  • Reddy, N. N. K., Vattikuti, S. V. P., Verma, V. K., Singh, V. R., Alhammadi, S., Kummara,V.K., Manjunath, V., Dhanalakshmi, M., & Reddy,V. R. M. (2022). Highly sensitive and cost-effective metal-semiconductor-metal asymmetric type Schottky metallization based ultraviolet photodetecting sensors fabricated on n-type GaN. Materials Science in Semiconductor Processing, 138, 106297. https://doi.org/10.1016/j.mssp.2021.106297
  • Sharma. M., & Tripathi, S. K. (2013). Analysis of interface states and series resistance for Al/PVA:n-CdS nanocomposite metal–semiconductor and metal–insulator–semiconductor diode structures. Applied Physics A, 113, 491-499. https://doi.org/10.1007/s00339-013-7552-3
  • Sze, S. M., & Ng, K. K. (2006). Physics of Semiconductor Devices. New York, John Wiley & Sons, Inc.
  • Ulusoy, M., Badali,Y., Pirgholi Givi, G., Azizian Kalandaragh,Y., & Altındal, Ş. (2023). The capacitance/conductance and surface state intensity characteristics of the Schottky structures with ruthenium dioxide-doped organic polymer interface. Synthetic Metals, 292, 11343. https://doi.org/ 10.1016/j.synthmet.2022.117243
  • Yerişkin, S. A., Balbaşı, M., & Orak, İ. (2017). The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. Journal of Materials Science: Materials in Electronics, 28, 14040–14048. https://doi.org/ 10.1007/s10854-017-7255-1
  • Zeyrek, S. (2015).The effect of interface states and series resistance on current-voltage characteristics in (MIS) Schottky Diodes. Afyon Kocatepe University Journal of Science & Engineering, 15(2), 021101, 1-9. https://doi.org/ 10.5578/fmbd.9657
There are 14 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications, Material Physics, Condensed Matter Physics (Other)
Journal Section Physics
Authors

Sabreen Hameed 0009-0002-1696-8705

Öznur Berkün 0000-0002-5854-9157

Seçkin Altındal Yerişkin 0000-0002-9772-1212

Early Pub Date March 25, 2024
Publication Date March 28, 2024
Submission Date December 15, 2023
Acceptance Date March 8, 2024
Published in Issue Year 2024 Volume: 11 Issue: 1

Cite

APA Hameed, S., Berkün, Ö., & Altındal Yerişkin, S. (2024). On the Voltage Dependent Series Resistance, Interface Traps, and Conduction Mechanisms in the Al/(Ti-doped DLC)/p-Si/Au Schottky Barrier Diodes (SBDs). Gazi University Journal of Science Part A: Engineering and Innovation, 11(1), 235-244. https://doi.org/10.54287/gujsa.1405552