Research Article
BibTex RIS Cite

NiTi ŞBA Tozlarında B2-R-B19' Fazlarına Sıcaklık ve Deformasyonun Etkilerinin İncelenmesi

Year 2018, Volume: 6 Issue: 3, 570 - 580, 30.09.2018
https://doi.org/10.29109/gujsc.387674

Abstract

Çalışmada,
önalaşımlı NiTi şekil bellekli alaşım (ŞBA) tozlarına oda sıcaklığında (25°C),
100°C’de ve 200°C’de, farklı deformasyon oranlarına (800MPa, 1300MPa, 1600MPa,
1800MPa, 2000MPa, 2500MPa) deformasyon uygulanmıştır. Çalışmada uygulanan
deformasyonun etkilerini tespit edebilmek için ise; DSC, XRD analizleri
yapılmış ve optik mikroskop görüntüleri incelenmiştir. 



Oda sıcaklığında
yapılan deformasyon neticesinde yapıda B2 ↔  R ve R ↔ B19' çift fazlı dönüşümü görülürken,
100°C’de ve 200°C’de yapılan deformasyonlar sonrası yapıda yalnızca B2
R dönüşümü görülmüştür. Numunelerin XRD analizleri incelendiğinde ise, ham
tozlarda görülen B2 (östenit) fazları deformasyon oranına bağlı
olarak pik şiddetleri düşmeye başlamış, en düşük B2 piki en yüksek
deformasyon oranında tespit edilmiştir. XRD pik şiddetindeki düşüşün nedeni ise
artan deformasyon oranına bağlı olarak, östenit pikinin şiddetinin azalmasına
ve martenzit pik şiddetlerinin ise oluşmaya başlaması olarak söylenebilir. 

References

  • Referans10 Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B., Manufacturing and processing of NiTi Implants. Prog. Mater Sci., 57 (2012) 911–946.
  • Referans11 Thier M., Hühner M., Kobus E., Drescher D., Bourauel C., Microstructure of As-cast NiTi alloy”, Materials Characterization. 27 : 3 (1991) 133-140.
  • Referans12 Ota, A., Yazaki, Y., Yokoyama, K., Sakai, J., Hydrogen Absorption and Thermal Desorption Behavior of Ni-Ti Super elastic Alloy Immersed in Neutral NaCl and NaF Solutions under Applied Potential. Materials Transactions, 50 : 7 (2009) 1843 - 1849,
  • Referans13 Yokoyama, K., Takashima K., Sakai, J., Susceptibility to Hydrogen Absorption and Hydrogen Thermal Desorption of Titanium Alloys Immersed in Neutral Fluoride Solution under Applied Potential. Materials Transactions, 49:7 (2008) 1661 – 1666.
  • Referans14 Cheng-lin C., Jonathan-Cy C., Paul-K C., Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Trans. Nonferrous Met. Soc. China, 16 (2006) 49-53.
  • Referans15 Chen G., Cao P., Wen G., Edmonds N., Li Y., Using an agar-based binder to produce porous NiTi alloys by metal injection moulding. Intermetallics, 37:92-99, (2013).
  • Referans16 Bram, M., Ahamad-Khanlou, A., Heckman, A., Fuchs, B., Buchkremer, H.P., Stover,D., Powder metallurgical fabrication process for NiTi shape memory alloys parts. Mater Sci Eng A, Vol 337: 254–263, (2002).
  • Referans17 Zhang L., Zhang Y.Q., Jiang Y.H., Zhou R., Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. Journal of Alloys and Compounds, 644: 513–522, (2015).
  • Referans18 Aksöz S., Bostan B., Characteric Properties of NiTi Shape memory Alloy Powders with Powder Injection Molding. International Multidisciplinary Microscopy Congress. Springer Proceedings in Physics Switzerland. Springer International Publishing Switzerland, 18 (2014) 129-142.
  • Referans19 Ghadimi M., Shokuhfar A., Rostami H.R., Ghaffari M., Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni-Ti elemental powders. Mater. Lett., 80 (2012) 181 – 183.
  • Referans1 Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci., (2005) 50:511–678.
  • Referans20 Panek J., Bierska-Piech B., Niedbała J., Mechanical synthesis and heat treatment of Ni75Ti25 alloy. Sol. State Phenom., 203 – 204 (2013) 390 – 393.
  • Referans21 Alijani, F., Amini, R., Ghaffari, M., Alizadeh, M., Okyay, A.K., Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying. Materials and Design, 55 (2014) 373–380.
  • Referans22 F2004–05 “Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis” (2010).
  • Referans23 Kan Q., Yu C., Kang G., Li J., Yan W., Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mechanics of Materials, 97 (2016) 48–58.
  • Referans24 F2005–05, “Standard Terminology for Nickel-Titanium Shape Memory Alloys” (2010).
  • Referans25 Kim J.I., Liu Y.N., Miyazaki S., Ageing-induced two-stage R-phase transformation in Ti–50.9at%Ni. Acta Mater., 52 (2004) 487–499.
  • Referans26 Fan Q.C., Zhang Y.H., Wang Y.Y., Sun M.Y., Meng Y.T., Huang S.K., Wen Y.H., Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Materials Science & Engineering A, 700:269–280 (2017).
  • Referans27 Michutta J., Somsen C.H., Yawny A., Dlouhy A., Eggeler G., Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates. Acta Mater., 54 (2006) 3525–3542.
  • Referans28 Xue D.Q., Zhou Y.M., Ren X.B., “The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy”, Intermetallics, 19 (2011) 1752–1758.
  • Referans29 Aksöz S., “Microstructural and Mechanical Investigation of NiTi Intermetallics Produced by Hot Deformation Technique”, Arab J Sci Eng, 42 : 6 (2017) 2573–2581.
  • Referans2 Oliveira J.P., Miranda R.M., Braz Fernandes F.M., Welding and Joining of NiTi Shape Memory Alloys: A Review, Progress in Materials Science 88 (2017) 412–466.
  • Referans30 Aksöz S., Demir Ü., Ada H., Gökmeşe H., Bostan B., “NiTi Şekil Bellekli Alaşım Tozlarına Mekanik Alaşımlama Yöntemi Kullanılarak Ni ve Ti Tozlarının İlavesinin Mikroyapısal İncelenmesi”, GU J Sci, Part C, 5 : 1 (2017) 99-106.
  • Referans3 Yu C., Kang G., Kan Q., A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. Journal of the Mechanics and Physics of Solids, 82 (2015) 97–136.
  • Referans4 Stephenson D.J., Mckeown P.A., Development in powder Co-injection moulding. CIRP Ann. Manuf. Technol., 49 (2000) 191–194.
  • Referans5 Lou J., He H., Li Y., Zhu C., Chen Z., Liu C., Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTi-based shape-memory alloys. Materials and Design, 106 (2016) 37–44.
  • Referans6 Sun B., Fu M.W., Lin J., Ning Y.Q., Effect of low-temperature aging treatment on thermally- and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Materials & Design, 131 (2017) 49–59.
  • Referans7 Brailovski V., Prokoshkin S., Terriault P., Trochu F., “Shape Memory Alloys: Fundamentals, Modeling and Applications”, École de technologie supérieure, 2003.
  • Referans8 Otsuka K., Wayman C.M., “Shape Memory Materials”, Cambridge University Press, 1999.
  • Referans9 Otsuka K., Ren X., Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci., 50 (2005) 511–678.
Year 2018, Volume: 6 Issue: 3, 570 - 580, 30.09.2018
https://doi.org/10.29109/gujsc.387674

Abstract

References

  • Referans10 Elahinia M.H., Hashemi M., Tabesh M., Bhaduri S.B., Manufacturing and processing of NiTi Implants. Prog. Mater Sci., 57 (2012) 911–946.
  • Referans11 Thier M., Hühner M., Kobus E., Drescher D., Bourauel C., Microstructure of As-cast NiTi alloy”, Materials Characterization. 27 : 3 (1991) 133-140.
  • Referans12 Ota, A., Yazaki, Y., Yokoyama, K., Sakai, J., Hydrogen Absorption and Thermal Desorption Behavior of Ni-Ti Super elastic Alloy Immersed in Neutral NaCl and NaF Solutions under Applied Potential. Materials Transactions, 50 : 7 (2009) 1843 - 1849,
  • Referans13 Yokoyama, K., Takashima K., Sakai, J., Susceptibility to Hydrogen Absorption and Hydrogen Thermal Desorption of Titanium Alloys Immersed in Neutral Fluoride Solution under Applied Potential. Materials Transactions, 49:7 (2008) 1661 – 1666.
  • Referans14 Cheng-lin C., Jonathan-Cy C., Paul-K C., Effects of heat treatment on characteristics of porous Ni-rich NiTi SMA prepared by SHS technique. Trans. Nonferrous Met. Soc. China, 16 (2006) 49-53.
  • Referans15 Chen G., Cao P., Wen G., Edmonds N., Li Y., Using an agar-based binder to produce porous NiTi alloys by metal injection moulding. Intermetallics, 37:92-99, (2013).
  • Referans16 Bram, M., Ahamad-Khanlou, A., Heckman, A., Fuchs, B., Buchkremer, H.P., Stover,D., Powder metallurgical fabrication process for NiTi shape memory alloys parts. Mater Sci Eng A, Vol 337: 254–263, (2002).
  • Referans17 Zhang L., Zhang Y.Q., Jiang Y.H., Zhou R., Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. Journal of Alloys and Compounds, 644: 513–522, (2015).
  • Referans18 Aksöz S., Bostan B., Characteric Properties of NiTi Shape memory Alloy Powders with Powder Injection Molding. International Multidisciplinary Microscopy Congress. Springer Proceedings in Physics Switzerland. Springer International Publishing Switzerland, 18 (2014) 129-142.
  • Referans19 Ghadimi M., Shokuhfar A., Rostami H.R., Ghaffari M., Effects of milling and annealing on formation and structural characterization of nanocrystalline intermetallic compounds from Ni-Ti elemental powders. Mater. Lett., 80 (2012) 181 – 183.
  • Referans1 Otsuka K, Ren X. Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci., (2005) 50:511–678.
  • Referans20 Panek J., Bierska-Piech B., Niedbała J., Mechanical synthesis and heat treatment of Ni75Ti25 alloy. Sol. State Phenom., 203 – 204 (2013) 390 – 393.
  • Referans21 Alijani, F., Amini, R., Ghaffari, M., Alizadeh, M., Okyay, A.K., Effect of milling time on the structure, micro-hardness, and thermal behavior of amorphous/nanocrystalline TiNiCu shape memory alloys developed by mechanical alloying. Materials and Design, 55 (2014) 373–380.
  • Referans22 F2004–05 “Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis” (2010).
  • Referans23 Kan Q., Yu C., Kang G., Li J., Yan W., Experimental observations on rate-dependent cyclic deformation of super-elastic NiTi shape memory alloy. Mechanics of Materials, 97 (2016) 48–58.
  • Referans24 F2005–05, “Standard Terminology for Nickel-Titanium Shape Memory Alloys” (2010).
  • Referans25 Kim J.I., Liu Y.N., Miyazaki S., Ageing-induced two-stage R-phase transformation in Ti–50.9at%Ni. Acta Mater., 52 (2004) 487–499.
  • Referans26 Fan Q.C., Zhang Y.H., Wang Y.Y., Sun M.Y., Meng Y.T., Huang S.K., Wen Y.H., Influences of transformation behavior and precipitates on the deformation behavior of Ni-rich NiTi alloys. Materials Science & Engineering A, 700:269–280 (2017).
  • Referans27 Michutta J., Somsen C.H., Yawny A., Dlouhy A., Eggeler G., Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni4Ti3 precipitates. Acta Mater., 54 (2006) 3525–3542.
  • Referans28 Xue D.Q., Zhou Y.M., Ren X.B., “The effect of aging on the B2-R transformation behaviors in Ti-51at%Ni alloy”, Intermetallics, 19 (2011) 1752–1758.
  • Referans29 Aksöz S., “Microstructural and Mechanical Investigation of NiTi Intermetallics Produced by Hot Deformation Technique”, Arab J Sci Eng, 42 : 6 (2017) 2573–2581.
  • Referans2 Oliveira J.P., Miranda R.M., Braz Fernandes F.M., Welding and Joining of NiTi Shape Memory Alloys: A Review, Progress in Materials Science 88 (2017) 412–466.
  • Referans30 Aksöz S., Demir Ü., Ada H., Gökmeşe H., Bostan B., “NiTi Şekil Bellekli Alaşım Tozlarına Mekanik Alaşımlama Yöntemi Kullanılarak Ni ve Ti Tozlarının İlavesinin Mikroyapısal İncelenmesi”, GU J Sci, Part C, 5 : 1 (2017) 99-106.
  • Referans3 Yu C., Kang G., Kan Q., A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals. Journal of the Mechanics and Physics of Solids, 82 (2015) 97–136.
  • Referans4 Stephenson D.J., Mckeown P.A., Development in powder Co-injection moulding. CIRP Ann. Manuf. Technol., 49 (2000) 191–194.
  • Referans5 Lou J., He H., Li Y., Zhu C., Chen Z., Liu C., Effects of high O contents on the microstructure, phase-transformation behaviour, and shape-recovery properties of porous NiTi-based shape-memory alloys. Materials and Design, 106 (2016) 37–44.
  • Referans6 Sun B., Fu M.W., Lin J., Ning Y.Q., Effect of low-temperature aging treatment on thermally- and stress-induced phase transformations of nanocrystalline and coarse-grained NiTi wires. Materials & Design, 131 (2017) 49–59.
  • Referans7 Brailovski V., Prokoshkin S., Terriault P., Trochu F., “Shape Memory Alloys: Fundamentals, Modeling and Applications”, École de technologie supérieure, 2003.
  • Referans8 Otsuka K., Wayman C.M., “Shape Memory Materials”, Cambridge University Press, 1999.
  • Referans9 Otsuka K., Ren X., Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci., 50 (2005) 511–678.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Tasarım ve Teknoloji
Authors

Sinan Aksöz 0000-0003-4324-5043

Gülizar Altınışık This is me

Ekrem Emre Elverişli

Bülent Bostan 0000-0002-6114-875X

Publication Date September 30, 2018
Submission Date January 31, 2018
Published in Issue Year 2018 Volume: 6 Issue: 3

Cite

APA Aksöz, S., Altınışık, G., Elverişli, E. E., Bostan, B. (2018). NiTi ŞBA Tozlarında B2-R-B19’ Fazlarına Sıcaklık ve Deformasyonun Etkilerinin İncelenmesi. Gazi University Journal of Science Part C: Design and Technology, 6(3), 570-580. https://doi.org/10.29109/gujsc.387674

                                TRINDEX     16167        16166    21432    logo.png

      

    e-ISSN:2147-9526