Research Article
BibTex RIS Cite

Chemometric Optimization of Ultrasonic Assisted Extraction Parameters of Antioxidants from White Chicory (Cichorium intybus L.)

Year 2023, Volume: 13 Issue: 3, 553 - 565, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1239972

Abstract

In order to optimize the experimental conditions for the ultrasonic assisted extraction of phenolic compounds from chicory leaves, a five level five factor central composite design response surface methodology was used. Total phenolic content and antioxidant capacity were selected as the response and 48 experiments were performed using five independent variables; time (min), HCl concentration (mol/L), temperature (ºC), liquid/solid ratio (mL/g) and methanol concentration (%). As a result of optimization, optimum conditions, for maximum total phenolic content were determined as temperature 73 ºC, time 69 min, methanol 84%, HCl concentration 0.57 mol/L and liquid/solid ratio 33.97 mL/g. The optimum conditions, for maximum antioxidant capacity were temperature 73 ºC, time 69 min, methanol 85%, HCl concentration 0.47 mol/L and liquid/solid ratio 33.99 mL/g. The total phenolic content of white chicory extract obtained as a result of extraction under optimum conditions was determined as 33.5±0.5 mg GAE/g dried plant and antioxidant capacity as 7.2±0.1 mg TE/g dried plant.

References

  • Ahmed, B., Al Howirin, A.T. & Siddiqui, AB. (2003). Antihepatotoxic activity of seeds of Cichorium intybus. Journal of Ethnopharmacology, 87(2-3), 237-240. https://doi.org/10.1016/S0378-8741(03)00145-4
  • Al-Snafi, A.E. (2016). Medical importance of Cichorium intybus – A review. Journal of Pharmacy, 6(3), 41-56.
  • Ait-Amir, B., Pougnet, P., & Hami, A.E. (2015). Meta-model development. Embedded Mechatronic Systems, 2, 157-187.
  • Atoui, A.K., Mansouri, A., Boskou, G. & Kefalas, P. (2005). Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry, 89, 27-36. https://doi.org/10.1016/j.foodchem.2004.01.075
  • Aybastıer, Ö., Şahin, S. & Demir, C. (2013). Response surface optimized ultrasonic-assisted extraction of quercetin and ısolation of phenolic compounds from hypericum perforatum l. by column chromatography. Separation Science and Technology, 48, 1665-1674. https://doi.org/10.1080/01496395.2012.760603
  • Bahmani, M., Rafieian-kopaei, M. & Saki, K. (2015). Chicory: A review on ethnobotanical effects of Cichorium intybus L. Journal of Chemical and Pharmaceutical Sciences, 8(4), 672-682.
  • Bais, H.P. & Ravishankar, G.A. (2001). Cichorium intybus L- Cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. Journal of the Science of Food and Agriculture, 81, 467-484. https://doi.org/10.1002/jsfa.817
  • Bezzera, M.A., Santelli, R.E., Oliveira, P., Villar, L.S. & Escaleira L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
  • Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72, 429-452. https://doi.org/10.1111/nure.12114
  • Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, 2, 209-242.
  • Cadalen, T., Mörchen, M. & Blassiau, C. (2010). Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol Breeding, 25, 699–722. https://doi.org/10.1007/s11032-009-9369-5
  • Chemat, F., Abert Vian, M., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S. & Fabiano Tixier, A.S. (2019). Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications, and prospects. Molecules, 24(16), 3007. https://doi.org/10.3390/molecules24163007
  • Chen, C., Wang, L., Wang, R., Luo, X., Li, Y., Li, J., Li, Y. & Chen, Z. (2018). Ultrasound-assisted extraction from defatted oat (Avena sativa L.) bran to simultaneously enhance phenolic compounds and β-glucan contents: compositional and kinetic studies. Journal of Food Engineering, 222, 1-10. https://doi.org/10.1016/j.jfoodeng.2017.11.002
  • Dalar, A. & Konczak, I. (2014). Cichorium intybus from Eastern Anatolia: Phenolic composition antioxidant and enzyme inhibitory activities. Industrial Crops and Products, 60, 79-85. https://doi.org/10.1016/j.indcrop.2014.05.043
  • Denev, P., Petkova, N., Ivanov, I., Sirakov, B., Vrancheva, R., & Pavlov, A. (2014). Determination of biologically active substances in taproot of common chicory (Cichorium intybus L.). Scientific Bulletin. Series F. Biotechnologies, 18, 124-129.
  • Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., Brandao, G.C, David, J.M., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S. & dos Santos, W.N.L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597, 179–186. https://doi.org/10.1016/j.aca.2007.07.011
  • Ferreira, S.L.C., Lemos, V.A., de Carvalho, V.S., da Silva, E.G.P., Queiroz, A.F.S., Felix, C.S.A., da Silva, D.L.F., Dourado, G.B. & Oliveira. R.V. (2018). Multivariate optimization techniques in analytical chemistry—an overview. Microchemical Journal, 140, 176–182. https://doi.org/10.1016/j.microc.2018.04.002
  • Gundogdu, M., Tunçtürk, M., Berk, S., Şekeroğlu, N. & Gezici, S. (2018). Antioxidant capacity and bioactive contents of mulberry species from Eastern Anatolia Region of Turkey. Indian Journal of Pharmaceutical Education and Research, 52(4), 96-101. https://doi.org/10.5530/ijper.52.4s.82
  • Huang, D., Ou, B. & Prior, R.L. (2005). The chemistry behind antioxidant capacity assays, Reviews. Journal of Agricultural Food Chemistry, 53, 1841-1856. https://doi.org/10.1021/jf030723c
  • Maran, J.P. & Priya, B. (2015). Ultrasound-assisted extraction of pectin from sisal waste. Carbohydrate Polymers, 115, 732-738. http://dx.doi.org/10.1016/j.carbpol.2014.07.058
  • Kaya, İ., İncekara, N. & Nemli Y. (2004). Ege Bölgesi'nde sebze olarak tüketilen yabani kuşkonmaz, sirken, yabani hindiba, rezene, gelincik, çoban değneği ve ebegümecinin bazı kimyasal analizleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 14(1), 1-6.
  • Khaghani, S., Shakouri, M. J., Mafakheri, S. & Aslanpour, M., (2012). Effect of different chemical fertilizers on chicory (Cichorium intybus L.). Indian Journal of Science and Technology, 5(1), 1-3. https://dx.doi.org/10.17485/ijst/2012/v5i1.15
  • Koner, A., Ghosh, S. & Roy, P. (2011). Isolation of antimicrobial compounds from chicory (Cichorium intybus L.) root. International Journal of Research in Pure and Applied Microbiology, 1(2), 13-18.
  • Mathew, S. & Abraham, T.E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chemistry, 94, 520-528. https://doi.org/10.1016/j.foodchem.2004.11.043
  • Molan, A.L., Duncan, A.J., Barry, T.N. & McNabb, W.C. (2003). Effects of condensed tannins and crude sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes. Parasitology International, 52(3), 209-218. https://doi.org/10.1016/s1383-5769(03)00011-4
  • Mulabagal, V., Wang, H., Ngouajio, M. & Nair, M.G. (2009). Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties. European Food Research and Technology, 230, 47-53. https://doi.org/10.1007/s00217-009-1144-7
  • Muthusamy, V.S., Anand, S., Sangeetha, K.N., Sujatha, S., Arun, B. & Lakshmi, B.S., (2008). Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chemistry Biol Interact, 174, 69-78. https://doi.org/10.1016/j.cbi.2008.04.016
  • Nandagopal, S. & Ranjitha Kumari, B.D. (2007). Phytochemical and antibacterial studies of chicory (Cichorium intybus L.)- a multipurpose medicinal plant. Advances in Biological Research, 1, 17-21.
  • Pan, Z., Qu W., Ma H., Atungulu G.G. & McHugh T.H. (2011). Continuous and pulsed ultrasound assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372. https://doi.org/10.1016/j.ultsonch.2011.01.005
  • Pattanaik, A. & Rayasam, V. (2018). Analysis of reverse cationic iron ore fines flotation Using RSM-D-optimal design – an approach towards sustainability. Advanced Powder Technology, 29(12), 3404-3414. https://doi.org/10.1016/j.apt.2018.09.021
  • Rahimullah T.G., Shah S.T., Rehman M., & Hayat A., (2019). Phytochemical and antibacterial screening of Cichorium intybus seeds use in traditional medicine systems in Pakistan. International Journal of Basic Medical Sciences and Pharmacy, 8, 46–49. https://doi.org/10.3390%2Fmolecules25184160
  • Sahan, Y., Gurbuz, O., Guldas, M., Degirmencioglu, N., & Begenirbas, A. (2017). Phenolics, antioxidant capacity and bioaccessibility of chicory varieties (Cichorium spp.) grown in Turkey. Food Chemistry, 217, 483-489. https://doi.org/10.1016/j.foodchem.2016.08.108
  • Sezik, E., Tabata, M., Yeşilada, E., Honda, G., Goto, K. & Ikeshiro, Y. (1991). Traditional medicine in Turkey I. Folk medicine in Northeast Anatolia Journal of Ethnopharmacology, 35(2), 191-196. https://doi.org/10.1016/0378-8741(91)90072-l, https://doi.org/10.1016/0378-8741(91)90072-L
  • Sinkovič, L., Demšar, L., Žnidarčič, D., Vidrih, R., Hribar, J., & Treutter, D. (2015). Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chemistry, 166, 507-513. https://doi.org/10.1016/j.foodchem.2014.06.024
  • Skerget, M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M. & Knez, Z. (2005). Phenols, proanthocyanidins, flavones, and flavonol in some plant materials and their antioxidant activities. Food Chemistry, 89, 191-198. https://doi.org/10.1016/j.foodchem.2004.02.025
  • Street, R.A., Sidana, J. & Prinsloo, G. (2013). Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology. Evidence-Based Complementary and Alternative Medicine, 579319. https://doi.org/10.1155/2013/579319
  • Youcai, Z. & Tao, Z. (2020). Pretreatment and aged refuse dosage on biohydrogen production from food waste. Biohydrogen Production and Hybrid Process Development Energy and Resource Recovery from Food Waste, 182, 149-238. http://doi.org/10.1016/B978-0-12-821728-3.00003-7
  • Zhang, Q., Zhou, M.M., Chen, P. L., Cao, Y.Y. & Tan, X.L. (2011). Optimization of ultrasonic‐assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. Journal of Food Science, 76(5), 680-685. https://doi.org/10.1111/j.1750-3841.2011.02174.x

Beyaz hindibadan (Cichorium intybus L.) antioksidan maddelerin ultrasonik destekli ekstraksiyon parametrelerinin kemometrik optimizasyonu

Year 2023, Volume: 13 Issue: 3, 553 - 565, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1239972

Abstract

Beyaz hindiba yapraklarından fenolik bileşiklerin ultrasonik destekli ekstraksiyonu için deneysel koşulları optimize etmek amacıyla beş seviyeli beş faktörlü yanıt yüzey yöntemi kullanılmıştır. Yanıt verileri olarak toplam fenolik madde ve antioksidan kapasite seçilerek beş bağımsız değişken; süre (dk), HCl derişimi (mol/L), sıcaklık (ºC), sıvı/katı oranı (mL/g) ve metanol derişimi (%) kullanılarak 48 deney gerçekleştirilmiştir. Optimizasyon sonucunda en yüksek toplam fenolik madde için optimum koşullar, sıcaklık 73 ºC, süre 69 dk, metanol derişimi %84, HCl derişimi 0.57 mol/L ve sıvı/katı oranı 33.97 mL/g olarak belirlenmiştir. En yüksek antioksidan kapasite için optimum koşullar sıcaklık 73 ºC, süre 69 dk, metanol derişimi %85, HCl derişimi 0.47 mol/L ve sıvı/katı oranı 33.99 mL/g olarak belirlenmiştir. Belirlenen optimum koşullarda gerçekleştirilen ekstraksiyon sonucunda elde edilen beyaz hindiba ekstraktının toplam fenolik madde içeriği 33.5±0.5 mg GAE/g kuru bitki ve antioksidan kapasite 7.2±0.1 mg TE/g kuru bitki olarak bulunmuştur.

References

  • Ahmed, B., Al Howirin, A.T. & Siddiqui, AB. (2003). Antihepatotoxic activity of seeds of Cichorium intybus. Journal of Ethnopharmacology, 87(2-3), 237-240. https://doi.org/10.1016/S0378-8741(03)00145-4
  • Al-Snafi, A.E. (2016). Medical importance of Cichorium intybus – A review. Journal of Pharmacy, 6(3), 41-56.
  • Ait-Amir, B., Pougnet, P., & Hami, A.E. (2015). Meta-model development. Embedded Mechatronic Systems, 2, 157-187.
  • Atoui, A.K., Mansouri, A., Boskou, G. & Kefalas, P. (2005). Tea and herbal infusions: Their antioxidant activity and phenolic profile. Food Chemistry, 89, 27-36. https://doi.org/10.1016/j.foodchem.2004.01.075
  • Aybastıer, Ö., Şahin, S. & Demir, C. (2013). Response surface optimized ultrasonic-assisted extraction of quercetin and ısolation of phenolic compounds from hypericum perforatum l. by column chromatography. Separation Science and Technology, 48, 1665-1674. https://doi.org/10.1080/01496395.2012.760603
  • Bahmani, M., Rafieian-kopaei, M. & Saki, K. (2015). Chicory: A review on ethnobotanical effects of Cichorium intybus L. Journal of Chemical and Pharmaceutical Sciences, 8(4), 672-682.
  • Bais, H.P. & Ravishankar, G.A. (2001). Cichorium intybus L- Cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. Journal of the Science of Food and Agriculture, 81, 467-484. https://doi.org/10.1002/jsfa.817
  • Bezzera, M.A., Santelli, R.E., Oliveira, P., Villar, L.S. & Escaleira L.A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977. https://doi.org/10.1016/j.talanta.2008.05.019
  • Bohn, T. (2014). Dietary factors affecting polyphenol bioavailability. Nutrition Reviews, 72, 429-452. https://doi.org/10.1111/nure.12114
  • Büyüktuncel, E. (2012). Gelişmiş ekstraksiyon teknikleri I. Hacettepe University Journal of the Faculty of Pharmacy, 2, 209-242.
  • Cadalen, T., Mörchen, M. & Blassiau, C. (2010). Development of SSR markers and construction of a consensus genetic map for chicory (Cichorium intybus L.). Mol Breeding, 25, 699–722. https://doi.org/10.1007/s11032-009-9369-5
  • Chemat, F., Abert Vian, M., Ravi, H.K., Khadhraoui, B., Hilali, S., Perino, S. & Fabiano Tixier, A.S. (2019). Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications, and prospects. Molecules, 24(16), 3007. https://doi.org/10.3390/molecules24163007
  • Chen, C., Wang, L., Wang, R., Luo, X., Li, Y., Li, J., Li, Y. & Chen, Z. (2018). Ultrasound-assisted extraction from defatted oat (Avena sativa L.) bran to simultaneously enhance phenolic compounds and β-glucan contents: compositional and kinetic studies. Journal of Food Engineering, 222, 1-10. https://doi.org/10.1016/j.jfoodeng.2017.11.002
  • Dalar, A. & Konczak, I. (2014). Cichorium intybus from Eastern Anatolia: Phenolic composition antioxidant and enzyme inhibitory activities. Industrial Crops and Products, 60, 79-85. https://doi.org/10.1016/j.indcrop.2014.05.043
  • Denev, P., Petkova, N., Ivanov, I., Sirakov, B., Vrancheva, R., & Pavlov, A. (2014). Determination of biologically active substances in taproot of common chicory (Cichorium intybus L.). Scientific Bulletin. Series F. Biotechnologies, 18, 124-129.
  • Ferreira, S.L.C., Bruns, R.E., Ferreira, H.S., Matos, G.D., Brandao, G.C, David, J.M., da Silva, E.G.P., Portugal, L.A., dos Reis, P.S., Souza, A.S. & dos Santos, W.N.L. (2007). Box-Behnken design: an alternative for the optimization of analytical methods. Analytica Chimica Acta, 597, 179–186. https://doi.org/10.1016/j.aca.2007.07.011
  • Ferreira, S.L.C., Lemos, V.A., de Carvalho, V.S., da Silva, E.G.P., Queiroz, A.F.S., Felix, C.S.A., da Silva, D.L.F., Dourado, G.B. & Oliveira. R.V. (2018). Multivariate optimization techniques in analytical chemistry—an overview. Microchemical Journal, 140, 176–182. https://doi.org/10.1016/j.microc.2018.04.002
  • Gundogdu, M., Tunçtürk, M., Berk, S., Şekeroğlu, N. & Gezici, S. (2018). Antioxidant capacity and bioactive contents of mulberry species from Eastern Anatolia Region of Turkey. Indian Journal of Pharmaceutical Education and Research, 52(4), 96-101. https://doi.org/10.5530/ijper.52.4s.82
  • Huang, D., Ou, B. & Prior, R.L. (2005). The chemistry behind antioxidant capacity assays, Reviews. Journal of Agricultural Food Chemistry, 53, 1841-1856. https://doi.org/10.1021/jf030723c
  • Maran, J.P. & Priya, B. (2015). Ultrasound-assisted extraction of pectin from sisal waste. Carbohydrate Polymers, 115, 732-738. http://dx.doi.org/10.1016/j.carbpol.2014.07.058
  • Kaya, İ., İncekara, N. & Nemli Y. (2004). Ege Bölgesi'nde sebze olarak tüketilen yabani kuşkonmaz, sirken, yabani hindiba, rezene, gelincik, çoban değneği ve ebegümecinin bazı kimyasal analizleri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 14(1), 1-6.
  • Khaghani, S., Shakouri, M. J., Mafakheri, S. & Aslanpour, M., (2012). Effect of different chemical fertilizers on chicory (Cichorium intybus L.). Indian Journal of Science and Technology, 5(1), 1-3. https://dx.doi.org/10.17485/ijst/2012/v5i1.15
  • Koner, A., Ghosh, S. & Roy, P. (2011). Isolation of antimicrobial compounds from chicory (Cichorium intybus L.) root. International Journal of Research in Pure and Applied Microbiology, 1(2), 13-18.
  • Mathew, S. & Abraham, T.E. (2006). Studies on the antioxidant activities of cinnamon (Cinnamomum verum) bark extracts, through various in vitro models. Food Chemistry, 94, 520-528. https://doi.org/10.1016/j.foodchem.2004.11.043
  • Molan, A.L., Duncan, A.J., Barry, T.N. & McNabb, W.C. (2003). Effects of condensed tannins and crude sesquiterpene lactones extracted from chicory on the motility of larvae of deer lungworm and gastrointestinal nematodes. Parasitology International, 52(3), 209-218. https://doi.org/10.1016/s1383-5769(03)00011-4
  • Mulabagal, V., Wang, H., Ngouajio, M. & Nair, M.G. (2009). Characterization and quantification of health beneficial anthocyanins in leaf chicory (Cichorium intybus) varieties. European Food Research and Technology, 230, 47-53. https://doi.org/10.1007/s00217-009-1144-7
  • Muthusamy, V.S., Anand, S., Sangeetha, K.N., Sujatha, S., Arun, B. & Lakshmi, B.S., (2008). Tannins present in Cichorium intybus enhance glucose uptake and inhibit adipogenesis in 3T3-L1 adipocytes through PTP1B inhibition. Chemistry Biol Interact, 174, 69-78. https://doi.org/10.1016/j.cbi.2008.04.016
  • Nandagopal, S. & Ranjitha Kumari, B.D. (2007). Phytochemical and antibacterial studies of chicory (Cichorium intybus L.)- a multipurpose medicinal plant. Advances in Biological Research, 1, 17-21.
  • Pan, Z., Qu W., Ma H., Atungulu G.G. & McHugh T.H. (2011). Continuous and pulsed ultrasound assisted extractions of antioxidants from pomegranate peel. Ultrasonics Sonochemistry, 19(2), 365-372. https://doi.org/10.1016/j.ultsonch.2011.01.005
  • Pattanaik, A. & Rayasam, V. (2018). Analysis of reverse cationic iron ore fines flotation Using RSM-D-optimal design – an approach towards sustainability. Advanced Powder Technology, 29(12), 3404-3414. https://doi.org/10.1016/j.apt.2018.09.021
  • Rahimullah T.G., Shah S.T., Rehman M., & Hayat A., (2019). Phytochemical and antibacterial screening of Cichorium intybus seeds use in traditional medicine systems in Pakistan. International Journal of Basic Medical Sciences and Pharmacy, 8, 46–49. https://doi.org/10.3390%2Fmolecules25184160
  • Sahan, Y., Gurbuz, O., Guldas, M., Degirmencioglu, N., & Begenirbas, A. (2017). Phenolics, antioxidant capacity and bioaccessibility of chicory varieties (Cichorium spp.) grown in Turkey. Food Chemistry, 217, 483-489. https://doi.org/10.1016/j.foodchem.2016.08.108
  • Sezik, E., Tabata, M., Yeşilada, E., Honda, G., Goto, K. & Ikeshiro, Y. (1991). Traditional medicine in Turkey I. Folk medicine in Northeast Anatolia Journal of Ethnopharmacology, 35(2), 191-196. https://doi.org/10.1016/0378-8741(91)90072-l, https://doi.org/10.1016/0378-8741(91)90072-L
  • Sinkovič, L., Demšar, L., Žnidarčič, D., Vidrih, R., Hribar, J., & Treutter, D. (2015). Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chemistry, 166, 507-513. https://doi.org/10.1016/j.foodchem.2014.06.024
  • Skerget, M., Kotnik, P., Hadolin, M., Hras, A.R., Simonic, M. & Knez, Z. (2005). Phenols, proanthocyanidins, flavones, and flavonol in some plant materials and their antioxidant activities. Food Chemistry, 89, 191-198. https://doi.org/10.1016/j.foodchem.2004.02.025
  • Street, R.A., Sidana, J. & Prinsloo, G. (2013). Cichorium intybus: traditional uses, phytochemistry, pharmacology, and toxicology. Evidence-Based Complementary and Alternative Medicine, 579319. https://doi.org/10.1155/2013/579319
  • Youcai, Z. & Tao, Z. (2020). Pretreatment and aged refuse dosage on biohydrogen production from food waste. Biohydrogen Production and Hybrid Process Development Energy and Resource Recovery from Food Waste, 182, 149-238. http://doi.org/10.1016/B978-0-12-821728-3.00003-7
  • Zhang, Q., Zhou, M.M., Chen, P. L., Cao, Y.Y. & Tan, X.L. (2011). Optimization of ultrasonic‐assisted enzymatic hydrolysis for the extraction of luteolin and apigenin from celery. Journal of Food Science, 76(5), 680-685. https://doi.org/10.1111/j.1750-3841.2011.02174.x
There are 38 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Açelya Aklan 0000-0002-7773-1608

Önder Aybastıer 0000-0002-0380-1992

Publication Date July 15, 2023
Submission Date January 20, 2023
Acceptance Date May 3, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Aklan, A., & Aybastıer, Ö. (2023). Beyaz hindibadan (Cichorium intybus L.) antioksidan maddelerin ultrasonik destekli ekstraksiyon parametrelerinin kemometrik optimizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 553-565. https://doi.org/10.17714/gumusfenbil.1239972