Research Article
BibTex RIS Cite
Year 2023, Volume: 5 Issue: 2, 1 - 5, 30.12.2023

Abstract

References

  • Stahl, S. (1993). The Poincare half-plane: A Gateway to modern geometry. Jones & Bartlett Learning.
  • Anderson, J. W. (2005). Hyperbolic geometry. Springer Undergraduate Mathematics Series, Springer-Verlag. https://doi.org/10.1007/1-84628-220-9
  • Greenberg, M. J. (1993). Euclidean and non-Euclidean geometries: Development and history. Macmillan.
  • Kaya, R. (2022). Generalized Poincare half-planes. arXiv preprint, arXiv:1904.01899. https://doi.org/10.48550/arXiv.1904.01899.
  • Bayar, A., Ekmekçi, S., & Akça, Z. (2008). On the plane geometry with generalized absolute value metric. Mathematical Problems in Engineering, Article ID 673275, 1-8.
  • Çolakoglu, H. B., & Kaya, R. (2011). A generalization of some well-known distances and related isometries. Mathematical Communications, 16(1), 21-35.
  • Ekmekçi, S., Bayar, A., & Altıntaş, A. K. (2015). On the group of isometries of the generalized taxicab plane. International Journal of Contemporary Mathematical Sciences, 10(4), 159-166.
  • Ekmekçi, S., Akça, Z., & Altıntaş, K. (2015). On trigonometric functions and norm in the generalized taxicab metric Mathematical Sciences and Applications E-Notes, 3(2), 27-33.
  • Kaya, R., Gelişgen, Ö., Ekmekçi, S., & Bayar, A. (2009). On the group of isometries of the plane with generalized absolute value metric. The Rocky Mountain Journal of Mathematics, 39(2), 591-603.

On the Generalized Poincare Distance

Year 2023, Volume: 5 Issue: 2, 1 - 5, 30.12.2023

Abstract

In this work, the concept of the generalized Poincaré distance is given and the distance between two points on vertical lines, horizontal lines and semi-ellipses in the upper half-plane are examined. It is also shown that translations parallel to the x-axis and reflections in the vertical lines preserve the generalized Poincaré distance in the upper half-plane.

References

  • Stahl, S. (1993). The Poincare half-plane: A Gateway to modern geometry. Jones & Bartlett Learning.
  • Anderson, J. W. (2005). Hyperbolic geometry. Springer Undergraduate Mathematics Series, Springer-Verlag. https://doi.org/10.1007/1-84628-220-9
  • Greenberg, M. J. (1993). Euclidean and non-Euclidean geometries: Development and history. Macmillan.
  • Kaya, R. (2022). Generalized Poincare half-planes. arXiv preprint, arXiv:1904.01899. https://doi.org/10.48550/arXiv.1904.01899.
  • Bayar, A., Ekmekçi, S., & Akça, Z. (2008). On the plane geometry with generalized absolute value metric. Mathematical Problems in Engineering, Article ID 673275, 1-8.
  • Çolakoglu, H. B., & Kaya, R. (2011). A generalization of some well-known distances and related isometries. Mathematical Communications, 16(1), 21-35.
  • Ekmekçi, S., Bayar, A., & Altıntaş, A. K. (2015). On the group of isometries of the generalized taxicab plane. International Journal of Contemporary Mathematical Sciences, 10(4), 159-166.
  • Ekmekçi, S., Akça, Z., & Altıntaş, K. (2015). On trigonometric functions and norm in the generalized taxicab metric Mathematical Sciences and Applications E-Notes, 3(2), 27-33.
  • Kaya, R., Gelişgen, Ö., Ekmekçi, S., & Bayar, A. (2009). On the group of isometries of the plane with generalized absolute value metric. The Rocky Mountain Journal of Mathematics, 39(2), 591-603.
There are 9 citations in total.

Details

Primary Language English
Subjects Pure Mathematics (Other)
Journal Section Articles
Authors

Ayşe Bayar 0000-0002-2210-5423

Sezin Cirdi Şaan 0000-0002-9885-5896

Publication Date December 30, 2023
Published in Issue Year 2023 Volume: 5 Issue: 2

Cite

APA Bayar, A., & Cirdi Şaan, S. (2023). On the Generalized Poincare Distance. Hagia Sophia Journal of Geometry, 5(2), 1-5.