Research Article
BibTex RIS Cite

Ricci Solitons on Pseudosymmetric $(\kappa,\mu)$-Paracontact Metric Manifolds

Year 2024, Volume: 6 Issue: 1, 33 - 44, 30.06.2024

Abstract

The object of the present paper is to study some types of Ricci pseudosymmetric $(\kappa,\mu)$-paracontact metric manifolds whose metric admits Ricci soliton. We researched the conditions when Ricci soliton on Ricci pseudosymmetric, concircular Ricci pseudosymmetric, $W_3$-Ricci pseudosymmetric, Weyly projective Ricci pseudosymmetric and conharmonic Ricci pseudosmettric conditions on a $(\kappa,\mu)$-paracontact metric manifold. According to these conditions, we have evaluated the manifold to be shrinking, steady and expanding. Finally, we have also constructed a non-trivial example of $(\kappa,\mu)$-paracontact metric manifolds whose metric admits Ricci soliton and found the functions for the Ricci pseudosymmetric conditions.

References

  • Kaneyuki, S., & Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, (99), 173–187.
  • Zamkovoy, S. (2009). Canonical connections on paracontact manifolds. Annals of Global Analysis and Geometry, 36(1), 37–60.
  • Makhal, S., & De, U. C. (2017). On pseudo-symmetric curvature conditions of generalized $\left( k,\mu \right) $-pacacontact metric manifolds. Konuralp J. of Mathematics, 5(2), 239–247.
  • Hamilton, R. S. (1982). Three-manifolds with positive Ricci curvature. J. Diff. Geom., 17, 255–306.
  • Sharma, R. (2008). Certain results on $\kappa $-contact and $(\kappa ,\mu )$-contact manifolds. J. of Geom., 89, 138–147.
  • Kowalczyk, D. (2001). On some subclass of semisymmetric manifolds. Soochow J. Math., 27, 445–462.
  • Ingalahalli, G., & Bagewadi, C. S. (2012). Ricci solitons in $\alpha $-Sasakian manifolds, Hindawi Publishing Corporation. ISRN Geometry, Article ID 421384, 13 pages.
  • Atçeken, M., Yıldırım, Ü., & Dirik, S. (2019). Semi-parallel submanifolds of a normal paracontact metric manifold. Hacet. J. Math. Stat., 48(2) 501–509.
  • Deszcz, R. (1992). On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A, 44(1), 1–34.
  • Chandra, S., Hui, S. K., & Shaikh, A. A. (2015). Second order parallel tensors and Ricci solitons on $(LCS)_{n}$-manifolds. Commun. Korean Math. Soc., 30, 123–130.
  • Hui S. K., & Lemence, R. S. (2015). Ricci pseudosymmetric generalized quasi-Einstein manifolds. Sut J. Math., 51, 195–213.
  • Hui, S. K., Shukla, S. S., & Chakraborty, D. (2017). $\eta $-Ricci solitons on $\eta $-Einstein Kenmotsu manifolds. Global J. Adv. Res. Clas. Mod. Geom., 6(1), 1–6.
  • Hui, S. K., Uddin, S., & Chakraborty, D. (2017). Generalized Sasakian-space-forms whose metric is $\mathit{\eta }$-Ricci almost solitons. Diff. Geom. and Dynamical Systems, 19, 45–55.
  • Hui, S. K., Lemence, R. S., & Chakraborty, D. (2018). Ricci pseudosymmetric $\left( LCS\right) _{n}$-manifolds. Honam Mathematical J., 40(2), 325–346.
  • Yıldırım, Ü., Atçeken, M., & Dirik, S. (2018). Ricci solitons on Ricci pseudosymmetric a normal paracontact metric manifold. Turkish Journal of Mathematics and Computer Science, 10, 242–248.
  • Acet, B. E. (2018). A note on Ricci solitons on para-sasakian manifolds. Erzincan University Journal of Science and Technology, 11(2), 237–242.
  • Siddiqi, M. D. (2020). Almost conformal Ricci solitons in $\left( k,\mu \right) $-paracontact metric manifolds. Palestine Journal of Mathematics, 9(2), 832–840.
  • Deszcz, R. (1989). On Ricci-pseudo-symmetric warped products. Demonstratio Math., 22, 1053–1065.
  • Jahanara, B., Haesen, S., Senturk, Z., & Verstraelen, L. (2007). On the parallel transport of the Ricci curvatures. J. Geom. Phys., 57, 1771–1777.
  • Pokhariyal, G. P. (1973). Curvature tensors and their relativistic signicance III. Yokohama Math. J., 21, 115–119.
Year 2024, Volume: 6 Issue: 1, 33 - 44, 30.06.2024

Abstract

References

  • Kaneyuki, S., & Williams, F. L. (1985). Almost paracontact and parahodge structures on manifolds. Nagoya Mathematical Journal, (99), 173–187.
  • Zamkovoy, S. (2009). Canonical connections on paracontact manifolds. Annals of Global Analysis and Geometry, 36(1), 37–60.
  • Makhal, S., & De, U. C. (2017). On pseudo-symmetric curvature conditions of generalized $\left( k,\mu \right) $-pacacontact metric manifolds. Konuralp J. of Mathematics, 5(2), 239–247.
  • Hamilton, R. S. (1982). Three-manifolds with positive Ricci curvature. J. Diff. Geom., 17, 255–306.
  • Sharma, R. (2008). Certain results on $\kappa $-contact and $(\kappa ,\mu )$-contact manifolds. J. of Geom., 89, 138–147.
  • Kowalczyk, D. (2001). On some subclass of semisymmetric manifolds. Soochow J. Math., 27, 445–462.
  • Ingalahalli, G., & Bagewadi, C. S. (2012). Ricci solitons in $\alpha $-Sasakian manifolds, Hindawi Publishing Corporation. ISRN Geometry, Article ID 421384, 13 pages.
  • Atçeken, M., Yıldırım, Ü., & Dirik, S. (2019). Semi-parallel submanifolds of a normal paracontact metric manifold. Hacet. J. Math. Stat., 48(2) 501–509.
  • Deszcz, R. (1992). On pseudosymmetric spaces. Bull. Soc. Math. Belg. Ser. A, 44(1), 1–34.
  • Chandra, S., Hui, S. K., & Shaikh, A. A. (2015). Second order parallel tensors and Ricci solitons on $(LCS)_{n}$-manifolds. Commun. Korean Math. Soc., 30, 123–130.
  • Hui S. K., & Lemence, R. S. (2015). Ricci pseudosymmetric generalized quasi-Einstein manifolds. Sut J. Math., 51, 195–213.
  • Hui, S. K., Shukla, S. S., & Chakraborty, D. (2017). $\eta $-Ricci solitons on $\eta $-Einstein Kenmotsu manifolds. Global J. Adv. Res. Clas. Mod. Geom., 6(1), 1–6.
  • Hui, S. K., Uddin, S., & Chakraborty, D. (2017). Generalized Sasakian-space-forms whose metric is $\mathit{\eta }$-Ricci almost solitons. Diff. Geom. and Dynamical Systems, 19, 45–55.
  • Hui, S. K., Lemence, R. S., & Chakraborty, D. (2018). Ricci pseudosymmetric $\left( LCS\right) _{n}$-manifolds. Honam Mathematical J., 40(2), 325–346.
  • Yıldırım, Ü., Atçeken, M., & Dirik, S. (2018). Ricci solitons on Ricci pseudosymmetric a normal paracontact metric manifold. Turkish Journal of Mathematics and Computer Science, 10, 242–248.
  • Acet, B. E. (2018). A note on Ricci solitons on para-sasakian manifolds. Erzincan University Journal of Science and Technology, 11(2), 237–242.
  • Siddiqi, M. D. (2020). Almost conformal Ricci solitons in $\left( k,\mu \right) $-paracontact metric manifolds. Palestine Journal of Mathematics, 9(2), 832–840.
  • Deszcz, R. (1989). On Ricci-pseudo-symmetric warped products. Demonstratio Math., 22, 1053–1065.
  • Jahanara, B., Haesen, S., Senturk, Z., & Verstraelen, L. (2007). On the parallel transport of the Ricci curvatures. J. Geom. Phys., 57, 1771–1777.
  • Pokhariyal, G. P. (1973). Curvature tensors and their relativistic signicance III. Yokohama Math. J., 21, 115–119.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Articles
Authors

Mehmet Atçeken 0000-0002-1242-4359

Tuğba Mert 0000-0001-8258-8298

Pakize Uygun 0000-0001-8226-4269

Publication Date June 30, 2024
Submission Date November 5, 2023
Acceptance Date June 23, 2024
Published in Issue Year 2024 Volume: 6 Issue: 1

Cite

APA Atçeken, M., Mert, T., & Uygun, P. (2024). Ricci Solitons on Pseudosymmetric $(\kappa,\mu)$-Paracontact Metric Manifolds. Hagia Sophia Journal of Geometry, 6(1), 33-44.