Year 2019,
Volume: 48 Issue: 4, 1017 - 1034, 08.08.2019
Nisha Bohra
Sushil Kumar
,
V. Ravichandran
References
- [1] R. Aghalary, P. Arjomandinia and A. Ebadian, Application of strong differential superordination
to a general equation, Rocky Mountain J. Math. 47 (2), 383-390, 2017.
- [2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, Differential subordination
for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3),
1017-1026, 2012.
- [3] R.M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski
starlikeness, Int. J. Math. Math. Sci. 2007, Art. ID 62925, 7 pages, 2007.
- [4] O. Altintas, Certain applications of subordination associated with neighborhoods,
Hacet. J. Math. Stat. 39 (4), 527-534, 2010.
- [5] N. Bohra and V. Ravichandran, On Confluent hypergeometric function and generalized
Bessel functions, Anal. Math. 43 (4), 533-545, 2017.
- [6] T. Bulboacă, Differential Subordinations and Superordinations. Recent Results, House
of Scientific Book Publ., Cluj-Napoca, 2005.
- [7] T. Bulboacă, N.E. Cho and P. Goswami, Differential superordinations and sandwichtype
results, in: Current Topics in Pure and Computational Complex Analysis, 109-
146, Trends Math, Birkhäuser/Springer, New Delhi, 2014.
- [8] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius Problems for Starlike
Functions Associated with the Sine Function, Bull. Iranian Math. Soc. 45 (1), 213-232,
2019.
- [9] P.L. Duren, Univalent Functions, GTM 259, Springer-Verlag, New York, 1983.
- [10] I. Faisal and M. Darus, Application of nonhomogenous Cauchy-Euler differential equation
for certain class of analytic functions, Hacet. J. Math. Stat. 43 (3), 375-382,
2014.
- [11] A.W. Goodman, Univalent Functions. Vol. I, Mariner, Tampa, FL, 1983.
- [12] P. Hästö, S. Ponnusamy and M. Vuorinen, Starlikeness of the Gaussian hypergeometric
functions, Complex Var. Elliptic Equ. 55 (1-3), 173-184, 2010.
- [13] W. Janowski, Some extremal problems for certain families of analytic functions. I,
Ann. Polon. Math. 28, 297-326, 1973.
- [14] S.S. Kumar, V. Kumar, V. Ravichandran and N.E. Cho, Sufficient conditions for
starlike functions associated with the lemniscate of Bernoulli, J Inequal. Appl. 2013,
Art. ID 176, 13 pages, 2013.
- [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.
- [16] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part,
Complex Anal. Oper. Theory 12 (5), 1179-1191, 2018.
- [17] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent
functions, in: Proceedings of the Conference on Complex Analysis (Tianjin), 157-
169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1992.
- [18] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations,
Michigan Math. J. 32 (2), 185-195, 1985.
- [19] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications,
Series of Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel
Dekker Inc., New York, 2000.
- [20] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike
functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1),
365-386, 2015.
- [21] L. Moslehi and A. Ansari, Squared radial Ornstein-Uhlenbeck processes and inverse
Laplace transforms of products of confluent hypergeometric functions, Hacet. J. Math.
Stat. 46 (3), 409-417, 2017
- [22] G. Oros, R. Sendrutiu and G.I. Oros, First-order strong differential superordinations,
Math. Rep. (Bucur.) 15 (2), 115-124, 2013.
- [23] K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination,
Bull. Austral. Math. Soc. 32 (3), 321-330, 1985.
- [24] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike
and convex functions of complex order, Hacet. J. Math. Stat. 34, 9-15, 2005.
- [25] V. Ravichandran, F. Rønning and T.N. Shanmugam, Radius of convexity and radius
of starlikeness for some classes of analytic functions, Complex Variables Theory Appl.
33 (1-4), 265-280, 1997.
- [26] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean
Math. Soc. 52 (4), 727-749, 2015.
- [27] T.N. Shanmugam, Convolution and differential subordination, Internat. J. Math.
Math. Sci. 12 (2), 333-340, 1989.
- [28] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.
- [29] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Folia Sci. Univ. Tech. Resoviensis, Math. 19, 101-105, 1996.
- [30] N. Tuneski, T. Bulboacă and B. Jolevska-Tunesk, Sharp results on linear combination
of simple expressions of analytic functions, Hacet. J. Math. Stat. 45 (1), 121-128,
2016.
Some special differential subordinations
Year 2019,
Volume: 48 Issue: 4, 1017 - 1034, 08.08.2019
Nisha Bohra
Sushil Kumar
,
V. Ravichandran
Abstract
For an analytic function $p$ satisfying $p(0)=1$, we obtain sharp estimates on $\beta$ such that the first order differential subordination $p(z)+\beta zp'(z)\prec \mathcal{P}(z)$ or $1+\beta zp'(z)/p^{j}(z)\prec \mathcal{P}(z)$, $(j=0,1,2)$ implies $p(z)\prec \mathcal{Q}(z)$ where $\mathcal{P}$ and $\mathcal{Q}$ are Carathéodory functions. The key tools in the proof of main results are the theory of differential subordination and some properties of hypergeometric functions. Further, these subordination results immediately give sufficient conditions for an analytic function $f$ to be in various well-known subclasses of starlike functions.
References
- [1] R. Aghalary, P. Arjomandinia and A. Ebadian, Application of strong differential superordination
to a general equation, Rocky Mountain J. Math. 47 (2), 383-390, 2017.
- [2] R.M. Ali, N.E. Cho, V. Ravichandran and S.S. Kumar, Differential subordination
for functions associated with the lemniscate of Bernoulli, Taiwanese J. Math. 16 (3),
1017-1026, 2012.
- [3] R.M. Ali, V. Ravichandran and N. Seenivasagan, Sufficient conditions for Janowski
starlikeness, Int. J. Math. Math. Sci. 2007, Art. ID 62925, 7 pages, 2007.
- [4] O. Altintas, Certain applications of subordination associated with neighborhoods,
Hacet. J. Math. Stat. 39 (4), 527-534, 2010.
- [5] N. Bohra and V. Ravichandran, On Confluent hypergeometric function and generalized
Bessel functions, Anal. Math. 43 (4), 533-545, 2017.
- [6] T. Bulboacă, Differential Subordinations and Superordinations. Recent Results, House
of Scientific Book Publ., Cluj-Napoca, 2005.
- [7] T. Bulboacă, N.E. Cho and P. Goswami, Differential superordinations and sandwichtype
results, in: Current Topics in Pure and Computational Complex Analysis, 109-
146, Trends Math, Birkhäuser/Springer, New Delhi, 2014.
- [8] N.E. Cho, V. Kumar, S.S. Kumar and V. Ravichandran, Radius Problems for Starlike
Functions Associated with the Sine Function, Bull. Iranian Math. Soc. 45 (1), 213-232,
2019.
- [9] P.L. Duren, Univalent Functions, GTM 259, Springer-Verlag, New York, 1983.
- [10] I. Faisal and M. Darus, Application of nonhomogenous Cauchy-Euler differential equation
for certain class of analytic functions, Hacet. J. Math. Stat. 43 (3), 375-382,
2014.
- [11] A.W. Goodman, Univalent Functions. Vol. I, Mariner, Tampa, FL, 1983.
- [12] P. Hästö, S. Ponnusamy and M. Vuorinen, Starlikeness of the Gaussian hypergeometric
functions, Complex Var. Elliptic Equ. 55 (1-3), 173-184, 2010.
- [13] W. Janowski, Some extremal problems for certain families of analytic functions. I,
Ann. Polon. Math. 28, 297-326, 1973.
- [14] S.S. Kumar, V. Kumar, V. Ravichandran and N.E. Cho, Sufficient conditions for
starlike functions associated with the lemniscate of Bernoulli, J Inequal. Appl. 2013,
Art. ID 176, 13 pages, 2013.
- [15] S. Kumar and V. Ravichandran, A subclass of starlike functions associated with a
rational function, Southeast Asian Bull. Math. 40 (2), 199-212, 2016.
- [16] S. Kumar and V. Ravichandran, Subordinations for functions with positive real part,
Complex Anal. Oper. Theory 12 (5), 1179-1191, 2018.
- [17] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent
functions, in: Proceedings of the Conference on Complex Analysis (Tianjin), 157-
169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1992.
- [18] S.S. Miller and P.T. Mocanu, On some classes of first-order differential subordinations,
Michigan Math. J. 32 (2), 185-195, 1985.
- [19] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications,
Series of Monographs and Textbooks in Pure and Applied Mathematics 225, Marcel
Dekker Inc., New York, 2000.
- [20] R. Mendiratta, S. Nagpal and V. Ravichandran, On a subclass of strongly starlike
functions associated with exponential function, Bull. Malays. Math. Sci. Soc. 38 (1),
365-386, 2015.
- [21] L. Moslehi and A. Ansari, Squared radial Ornstein-Uhlenbeck processes and inverse
Laplace transforms of products of confluent hypergeometric functions, Hacet. J. Math.
Stat. 46 (3), 409-417, 2017
- [22] G. Oros, R. Sendrutiu and G.I. Oros, First-order strong differential superordinations,
Math. Rep. (Bucur.) 15 (2), 115-124, 2013.
- [23] K.S. Padmanabhan and R. Parvatham, Some applications of differential subordination,
Bull. Austral. Math. Soc. 32 (3), 321-330, 1985.
- [24] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike
and convex functions of complex order, Hacet. J. Math. Stat. 34, 9-15, 2005.
- [25] V. Ravichandran, F. Rønning and T.N. Shanmugam, Radius of convexity and radius
of starlikeness for some classes of analytic functions, Complex Variables Theory Appl.
33 (1-4), 265-280, 1997.
- [26] V. Ravichandran and K. Sharma, Sufficient conditions for starlikeness, J. Korean
Math. Soc. 52 (4), 727-749, 2015.
- [27] T.N. Shanmugam, Convolution and differential subordination, Internat. J. Math.
Math. Sci. 12 (2), 333-340, 1989.
- [28] K. Sharma, N.K. Jain and V. Ravichandran, Starlike functions associated with a
cardioid, Afr. Mat. 27 (5-6), 923-939, 2016.
- [29] J. Sokol and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike
functions, Folia Sci. Univ. Tech. Resoviensis, Math. 19, 101-105, 1996.
- [30] N. Tuneski, T. Bulboacă and B. Jolevska-Tunesk, Sharp results on linear combination
of simple expressions of analytic functions, Hacet. J. Math. Stat. 45 (1), 121-128,
2016.