A novel differential evolution algorithm approach for estimating the parameters of Gamma distribution: An application to the failure stresses of single carbon fibres
Year 2020,
Volume: 49 Issue: 4, 1493 - 1514, 06.08.2020
Aynur Yonar
,
Nimet Yapıcı Pehlivan
Abstract
Three-parameter (3-p) Gamma distribution is widely used to model for skewed data in the reliability field. Thus, the problem of parameter estimation for the Gamma distribution has remained significant and interesting in all times. The maximum likelihood (ML) and the least square (LS) are the most popular methods in the parameter estimation. In this study, a novel Differential Evolution (DE) algorithm is proposed for the ML and LS estimation of the parameters of the 3-p Gamma distribution. This approach overcomes the problem of how to determine the search space of the DE by utilizing a new search space based on the confidence interval. The modified maximum likelihood and the profile likelihood methods are considered to constitute the confidence interval. In order to examine the performance of the proposed approach, an extensive Monte Carlo simulation study and a real data application are performed. The results show that this proposed approach is effective for estimating the parameters of the 3-p Gamma distribution with respect to mean square error and deficiency criteria.
Supporting Institution
Selçuk University
Project Number
2016-OYP-063.
References
- [1] Ş. Acıtaş, Ç.H. Aladağ, and B. Şenoglu, A new approach for estimating the parameters
of Weibull distribution via particle swarm optimization: An application to the
strengths of glass fibre data, Reliability Engineering System Safety, 183, 116-127,
2019.
- [2] M. Asim, W.M. Khan, Ö. Yeniay, M. A. Jan, N. Tairan, H. Hussian, and G.-G. Wang,
Hybrid genetic algorithms for global optimization problems. Hacet. J. Math. Stat., 47
(3), 539-551, 2018.
- [3] N. Balakrishnan and J., Wang, Simple efficient estimation for the three-parameter
gamma distribution, J. Statist. Plann. Inference, 85 (1-2), 115-126, 2000.
- [4] I. Başak and N. Balakrishnan, Estimation for the three-parameter gamma distribution
based on progressively censored data, Stat. Methodol., 9 (3), 305-319, 2012.
- [5] O.T. Bayrak and A.D. Akkaya, Autoregressive models with stochastic design variables
and nonnormal innovations, Recent Researches in Applied Mathematics, Simulation
and Modeling, Proceedings of the 5th International Conference on Applied Mathematics,
Simulation, Modeling, 197-201, 2011.
- [6] A.C. Cohen and B.J. Whitten, Modified moment and maximum likelihood estimators
for parameters of the three-parameter gamma distribution, Comm. Statist. Simulation
Comput., 11 (2), 197-216, 1982.
- [7] A.C. Cohen and B.J. Whitten, Modified moment estimation for the three-parameter
gamma distribution, Journal of Quality Technology, 18 (1), 53-62, 1986.
- [8] M.J. Crowder, A.C. Kimber, R.L. Smith, and T.J. Sweating, The Statistical Analysis
of Reliability Data, Chapman and Hall, London, 1991.
- [9] S. Das, S.S. Mullick, and P.N. Suganthan, Recent advances in differential evolutionan
updated surve, Swarm Evolutionary Computation, 27, 1-30, 2016.
- [10] H. Hirose, Maximum likelihood parameter estimation in the three-parameter gamma
distribution, Comput. Statist. Data Anal., 20,(4) 343-354, 1995.
- [11] N.L. Johnson, S. Kotz, and N. Balakrishnan, Univariate continuous distributions:
New York: John Wiley & Sons, 1994.
- [12] V. Lakshmi and V. Vaidyanathan, Three-parameter gamma distribution: Estimation
using likelihood, spacings and least squares approach, Journal of Statistics Management
Systems, 19 (10), 37-53, 2016.
- [13] W.K. Mashwani, Enhanced versions of differential evolution: state-of-the-art survey,
Int. J. Comput. Sci. Math., 5 (2), 107-126, 2014.
- [14] W.K. Mashwani, et al., Hybrid Constrained Evolutionary Algorithm for Numerical
Optimization Problems. Int. J. Comput. Sci. Math., 48 (3), 931-950, 2018.
- [15] E. Mezura-Montes, M.E. Miranda-Varela, and R. Carmen Gomez-Ramon, Differential
evolution in constrained numerical optimization: an empirical study. Inform. Sci., 180
(22), , 4223-4262, 2010.
- [16] A.W. Mohamed and H.Z. Sabry, Constrained optimization based on modified differential
evolution algorithm, Inform. Sci., 194, 171-208, 2012.
- [17] M.N. Omidvar, X. Li, Y. Mei, and X. Yao, Cooperative co-evolution with differential
grouping for large scale optimization. IEEE Trans. Evol. Comput., 18(3), 378-393,
2013.
- [18] E.O.J. Ouedraogo, B. Some, and S. Dossou-Gbete, On Maximum Likelihood Estimation
for the Three Parameter Gamma Distribution Based on Left Censored Samples,
Sci. J. Appl. Math. and Stat., 5(4), 147-163, 2017.
- [19] H. Örkçü, E. Aksoy, and M.I. Doğan, Estimating the parameters of 3-p Weibull distribution
through differential evolution, Appl. Math. Comput., 251, 211-224, 2015.
- [20] V.S. Özsoy, M.G. Ünsal, and H.H. Örkçü, Use of the heuristic optimization in the
parameter estimation of generalized gamma distribution: comparison of GA, DE,
PSO and SA methods, Comput. Statist. Data Anal., 1-31, 2020.
- [21] K. Price, R.M. Storn, and J.A. Lampinen, Differential evolution: a practical approach
to global optimization: Springer Science and Business Media, 2006.
- [22] K. Sindhya, S. Ruuska, T. Haanpaa, and K. Miettinen, A new hybrid mutation operator
for multiobjective optimization with differential evolution, Soft Computing, 15
(10), 2041-2055, 2011.
- [23] R. Storn, On the usage of differential evolution for function optimization. in: Fuzzy
Information Processing Society, Biennial Conference of the North American, 519-523,
IEEE, 1996.
- [24] R. Storn and K. Price, Differential evolutiona simple and efficient heuristic for global
optimization over continuous spaces, J. Global Optim., 11 (4), 341-359, 1997.
- [25] E.-G. Talbi, Metaheuristics: from design to implementation: John Wiley & Sons,
2009.
- [26] M.L. Tiku and A.D. Akkaya, Robust estimation and hypothesis testing: New Age
International, 2004.
- [27] G. Tzavelas,Maximum likelihood parameter estimation in the three-parameter gamma
distribution with the use of Mathematica. J. Stat. Comput. Simul., 79 (12), 1457-1466,
2009.
- [28] G. Tzavelas, Estimation in the Three-Parameter Gamma Distribution Based on the
Profile Log-Likelihood Function, Comm. Statist. Theory Methods, 38 (5), 573-583,
2009.
- [29] D. Vaughan and M. Tiku, Estimation and hypothesis testing for a nonnormal bivariate
distribution with applications. Math. Comput. Model., 32 (4), 27, 2011. (1-2), 53-67,
2000.
- [30] A. Yalçınkaya, B. Şenoglu, and U. Yolcu, Maximum likelihood estimation for the
parameters of skew normal distribution using genetic algorithm, Swarm and Evolutionary
Computation, 38, 127-138, 2018.
- [31] X.-S. Yang, Engineering optimization: An introduction with metaheuristic applications:
John Wiley & Sons, 2010.
- [32] J.-H. Zhong and J. Zhang, SDE: A stochastic coding differential evolution for global
optimization in: Proceedings of the 14th annual conference on Genetic and evolutionary
computation, 975-982, ACM, 2012.
Year 2020,
Volume: 49 Issue: 4, 1493 - 1514, 06.08.2020
Aynur Yonar
,
Nimet Yapıcı Pehlivan
Project Number
2016-OYP-063.
References
- [1] Ş. Acıtaş, Ç.H. Aladağ, and B. Şenoglu, A new approach for estimating the parameters
of Weibull distribution via particle swarm optimization: An application to the
strengths of glass fibre data, Reliability Engineering System Safety, 183, 116-127,
2019.
- [2] M. Asim, W.M. Khan, Ö. Yeniay, M. A. Jan, N. Tairan, H. Hussian, and G.-G. Wang,
Hybrid genetic algorithms for global optimization problems. Hacet. J. Math. Stat., 47
(3), 539-551, 2018.
- [3] N. Balakrishnan and J., Wang, Simple efficient estimation for the three-parameter
gamma distribution, J. Statist. Plann. Inference, 85 (1-2), 115-126, 2000.
- [4] I. Başak and N. Balakrishnan, Estimation for the three-parameter gamma distribution
based on progressively censored data, Stat. Methodol., 9 (3), 305-319, 2012.
- [5] O.T. Bayrak and A.D. Akkaya, Autoregressive models with stochastic design variables
and nonnormal innovations, Recent Researches in Applied Mathematics, Simulation
and Modeling, Proceedings of the 5th International Conference on Applied Mathematics,
Simulation, Modeling, 197-201, 2011.
- [6] A.C. Cohen and B.J. Whitten, Modified moment and maximum likelihood estimators
for parameters of the three-parameter gamma distribution, Comm. Statist. Simulation
Comput., 11 (2), 197-216, 1982.
- [7] A.C. Cohen and B.J. Whitten, Modified moment estimation for the three-parameter
gamma distribution, Journal of Quality Technology, 18 (1), 53-62, 1986.
- [8] M.J. Crowder, A.C. Kimber, R.L. Smith, and T.J. Sweating, The Statistical Analysis
of Reliability Data, Chapman and Hall, London, 1991.
- [9] S. Das, S.S. Mullick, and P.N. Suganthan, Recent advances in differential evolutionan
updated surve, Swarm Evolutionary Computation, 27, 1-30, 2016.
- [10] H. Hirose, Maximum likelihood parameter estimation in the three-parameter gamma
distribution, Comput. Statist. Data Anal., 20,(4) 343-354, 1995.
- [11] N.L. Johnson, S. Kotz, and N. Balakrishnan, Univariate continuous distributions:
New York: John Wiley & Sons, 1994.
- [12] V. Lakshmi and V. Vaidyanathan, Three-parameter gamma distribution: Estimation
using likelihood, spacings and least squares approach, Journal of Statistics Management
Systems, 19 (10), 37-53, 2016.
- [13] W.K. Mashwani, Enhanced versions of differential evolution: state-of-the-art survey,
Int. J. Comput. Sci. Math., 5 (2), 107-126, 2014.
- [14] W.K. Mashwani, et al., Hybrid Constrained Evolutionary Algorithm for Numerical
Optimization Problems. Int. J. Comput. Sci. Math., 48 (3), 931-950, 2018.
- [15] E. Mezura-Montes, M.E. Miranda-Varela, and R. Carmen Gomez-Ramon, Differential
evolution in constrained numerical optimization: an empirical study. Inform. Sci., 180
(22), , 4223-4262, 2010.
- [16] A.W. Mohamed and H.Z. Sabry, Constrained optimization based on modified differential
evolution algorithm, Inform. Sci., 194, 171-208, 2012.
- [17] M.N. Omidvar, X. Li, Y. Mei, and X. Yao, Cooperative co-evolution with differential
grouping for large scale optimization. IEEE Trans. Evol. Comput., 18(3), 378-393,
2013.
- [18] E.O.J. Ouedraogo, B. Some, and S. Dossou-Gbete, On Maximum Likelihood Estimation
for the Three Parameter Gamma Distribution Based on Left Censored Samples,
Sci. J. Appl. Math. and Stat., 5(4), 147-163, 2017.
- [19] H. Örkçü, E. Aksoy, and M.I. Doğan, Estimating the parameters of 3-p Weibull distribution
through differential evolution, Appl. Math. Comput., 251, 211-224, 2015.
- [20] V.S. Özsoy, M.G. Ünsal, and H.H. Örkçü, Use of the heuristic optimization in the
parameter estimation of generalized gamma distribution: comparison of GA, DE,
PSO and SA methods, Comput. Statist. Data Anal., 1-31, 2020.
- [21] K. Price, R.M. Storn, and J.A. Lampinen, Differential evolution: a practical approach
to global optimization: Springer Science and Business Media, 2006.
- [22] K. Sindhya, S. Ruuska, T. Haanpaa, and K. Miettinen, A new hybrid mutation operator
for multiobjective optimization with differential evolution, Soft Computing, 15
(10), 2041-2055, 2011.
- [23] R. Storn, On the usage of differential evolution for function optimization. in: Fuzzy
Information Processing Society, Biennial Conference of the North American, 519-523,
IEEE, 1996.
- [24] R. Storn and K. Price, Differential evolutiona simple and efficient heuristic for global
optimization over continuous spaces, J. Global Optim., 11 (4), 341-359, 1997.
- [25] E.-G. Talbi, Metaheuristics: from design to implementation: John Wiley & Sons,
2009.
- [26] M.L. Tiku and A.D. Akkaya, Robust estimation and hypothesis testing: New Age
International, 2004.
- [27] G. Tzavelas,Maximum likelihood parameter estimation in the three-parameter gamma
distribution with the use of Mathematica. J. Stat. Comput. Simul., 79 (12), 1457-1466,
2009.
- [28] G. Tzavelas, Estimation in the Three-Parameter Gamma Distribution Based on the
Profile Log-Likelihood Function, Comm. Statist. Theory Methods, 38 (5), 573-583,
2009.
- [29] D. Vaughan and M. Tiku, Estimation and hypothesis testing for a nonnormal bivariate
distribution with applications. Math. Comput. Model., 32 (4), 27, 2011. (1-2), 53-67,
2000.
- [30] A. Yalçınkaya, B. Şenoglu, and U. Yolcu, Maximum likelihood estimation for the
parameters of skew normal distribution using genetic algorithm, Swarm and Evolutionary
Computation, 38, 127-138, 2018.
- [31] X.-S. Yang, Engineering optimization: An introduction with metaheuristic applications:
John Wiley & Sons, 2010.
- [32] J.-H. Zhong and J. Zhang, SDE: A stochastic coding differential evolution for global
optimization in: Proceedings of the 14th annual conference on Genetic and evolutionary
computation, 975-982, ACM, 2012.