Research Article
BibTex RIS Cite
Year 2021, Volume: 50 Issue: 5, 1268 - 1279, 15.10.2021
https://doi.org/10.15672/hujms.775508

Abstract

References

  • [1] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard type inequalities, J. Inequal.Appl. 2009, Article ID 943534, 13 pages, 2009.
  • [2] G. Adilov and I. Yesilce, $B^{-1}$-convex Sets and $B^{-1}$-measurable Maps., Numer. Func. Anal. Opt. 33 (2), 131–141, 2012.
  • [3] J.B. Jesús Bastero and A. Peña, The Theorems of Caratheodory and Gluskin for $0<p<1$, Proc. Amer. Math. Soc. 123 (1), 141–144, 1995.
  • [4] G. Birkhoff and M.K. Bennett, The convexity lattice of a poset, Order 2 (3), 223–242, 1985.
  • [5] W. Briec and C. Horvath, Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and B-convexity, J. Math. Anal. App. 341 (1), 188–199, 2008.
  • [6] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GG-convex functions, Indian J. Math. 60 (1), 1–21, 2018.
  • [7] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GH-convex functions, Electron. J. Math. Anal. Appl. 7 (2), 244–255, 2019.
  • [8] S.S. Dragomir and B.T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic p-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 1130 (4), 3413–3423, 2019.
  • [9] S.S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
  • [10] S.S. Dragomir and S. Fitzpatrick, Hadamard’s inequality for s-convex functions in the first sense and applications, Demonstr. Math. 31 (3), 633–642, 1998.
  • [11] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 32 (4), 687–696, 1999.
  • [12] X.C. Huang and X.P. Zhou, Probabilistic assessment for slope using the generalized Chebyshev inequalities, Int. J. Geomec. 20 (4), 06020003, 2020.
  • [13] I. Kawai, Locally convex lattices, J. Math. Soc. Jpn. 9 (3), 281–314, 1957.
  • [14] S. Kemali, G. Tinaztepe and G. Adilov, New Type Inequalities for $B^{-1}$-convex Functions involving Hadamard Fractional Integral, Facta Univ-Ser. Math. Informat. 33 (5), 697–704, 2019.
  • [15] S. Kemali, I. Yesilce and G. Adilov, $B$-Convexity, $B^{-1}$-Convexity, and Their Comparison, Numer. Func. Anal. Opt. 36 (2), 133–146, 2015.
  • [16] T. Migot and M. G. Cojocaru, A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem, Eur. J. Oper. Res. 283 (3), 1136–1147, 2020.
  • [17] S. Nayak, The Hadamard determinant inequality-Extensions to operators on a Hilbert space, J. Func. Analysis 274 (10), 2978–3002, 2018.
  • [18] H. Ogasawara, The multivariate Markov and multiple Chebyshev inequalities, Commu. Stat. Theory 49 2, 441–453, 2020.
  • [19] S. Sezer, Z. Eken, G. Tnaztepe and G. Adilov, $p$-convex functions and their some properties, Numer. Func. Anal. Opt. 42 (4), 443–459, 2021. DOI: 10.1080/01630563.2021.1884876.
  • [20] W. Takahashi, A convexity in metric space and nonexpansive mappings. I., Kodai Math. Sem. Rep. 22 (2), 142–149, 1970. DOI: 10.2996/kmj/1138846111
  • [21] Y. User and K. Gulez, A new direct torque control algorithm for torque and flux ripple reduction, Int. Rev. Elect. Eng. 8 (4), 644–653, 2013.
  • [22] J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (9), 563–564, 1948.
  • [23] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for $B$-convex and $B^{-1}$- convex functions, Int. J. Nonlinear Anal. Appl. 8, 225–233, 2017.
  • [24] I. Yesilce and G. Adilov, Hermite-Hadamard type inequalities for $B^{-1}$-convex functions involving generalized fractional integral operators, Filomat 32 (18), 6457–6464, 2018.
  • [25] I. Yesilce and G. Adilov, Hermite-Hadamard Inequalities for L (j)-convex Functions and S (j)-convex Functions, Malaya J. Mat. 3 (3), 346–359, 2015.
  • [26] A.M. Zaki, A.M. El-Nagar, M. El-Bardini and F.A.S. Soliman, Deep learning controller for nonlinear system based on Lyapunov stability criterion, Neural Comput. Appl. 33, 1515–1531, 2021.

The Hermite-Hadamard inequalities for $p$-convex functions

Year 2021, Volume: 50 Issue: 5, 1268 - 1279, 15.10.2021
https://doi.org/10.15672/hujms.775508

Abstract

In this paper, the Hermite-Hadamard inequality for $p-$convex function is provided. Some integral inequalities for them are also presented. Also, based on the integral and double integral of $p-$convex sets, the new functions are defined and under certain conditions, $p-$convexity of these functions are shown. Some inequalities for these functions are expressed.

References

  • [1] G. Adilov and S. Kemali, Abstract convexity and Hermite-Hadamard type inequalities, J. Inequal.Appl. 2009, Article ID 943534, 13 pages, 2009.
  • [2] G. Adilov and I. Yesilce, $B^{-1}$-convex Sets and $B^{-1}$-measurable Maps., Numer. Func. Anal. Opt. 33 (2), 131–141, 2012.
  • [3] J.B. Jesús Bastero and A. Peña, The Theorems of Caratheodory and Gluskin for $0<p<1$, Proc. Amer. Math. Soc. 123 (1), 141–144, 1995.
  • [4] G. Birkhoff and M.K. Bennett, The convexity lattice of a poset, Order 2 (3), 223–242, 1985.
  • [5] W. Briec and C. Horvath, Nash points, Ky Fan inequality and equilibria of abstract economies in Max-Plus and B-convexity, J. Math. Anal. App. 341 (1), 188–199, 2008.
  • [6] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GG-convex functions, Indian J. Math. 60 (1), 1–21, 2018.
  • [7] S.S. Dragomir, Inequalities of Hermite-Hadamard type for GH-convex functions, Electron. J. Math. Anal. Appl. 7 (2), 244–255, 2019.
  • [8] S.S. Dragomir and B.T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic p-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 1130 (4), 3413–3423, 2019.
  • [9] S.S. Dragomir and C. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.
  • [10] S.S. Dragomir and S. Fitzpatrick, Hadamard’s inequality for s-convex functions in the first sense and applications, Demonstr. Math. 31 (3), 633–642, 1998.
  • [11] S.S. Dragomir and S. Fitzpatrick, The Hadamard inequalities for s-convex functions in the second sense. Demonstr. Math. 32 (4), 687–696, 1999.
  • [12] X.C. Huang and X.P. Zhou, Probabilistic assessment for slope using the generalized Chebyshev inequalities, Int. J. Geomec. 20 (4), 06020003, 2020.
  • [13] I. Kawai, Locally convex lattices, J. Math. Soc. Jpn. 9 (3), 281–314, 1957.
  • [14] S. Kemali, G. Tinaztepe and G. Adilov, New Type Inequalities for $B^{-1}$-convex Functions involving Hadamard Fractional Integral, Facta Univ-Ser. Math. Informat. 33 (5), 697–704, 2019.
  • [15] S. Kemali, I. Yesilce and G. Adilov, $B$-Convexity, $B^{-1}$-Convexity, and Their Comparison, Numer. Func. Anal. Opt. 36 (2), 133–146, 2015.
  • [16] T. Migot and M. G. Cojocaru, A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem, Eur. J. Oper. Res. 283 (3), 1136–1147, 2020.
  • [17] S. Nayak, The Hadamard determinant inequality-Extensions to operators on a Hilbert space, J. Func. Analysis 274 (10), 2978–3002, 2018.
  • [18] H. Ogasawara, The multivariate Markov and multiple Chebyshev inequalities, Commu. Stat. Theory 49 2, 441–453, 2020.
  • [19] S. Sezer, Z. Eken, G. Tnaztepe and G. Adilov, $p$-convex functions and their some properties, Numer. Func. Anal. Opt. 42 (4), 443–459, 2021. DOI: 10.1080/01630563.2021.1884876.
  • [20] W. Takahashi, A convexity in metric space and nonexpansive mappings. I., Kodai Math. Sem. Rep. 22 (2), 142–149, 1970. DOI: 10.2996/kmj/1138846111
  • [21] Y. User and K. Gulez, A new direct torque control algorithm for torque and flux ripple reduction, Int. Rev. Elect. Eng. 8 (4), 644–653, 2013.
  • [22] J. G. Wendel, Note on the gamma function, Amer. Math. Monthly 55 (9), 563–564, 1948.
  • [23] I. Yesilce and G. Adilov, Hermite-Hadamard inequalities for $B$-convex and $B^{-1}$- convex functions, Int. J. Nonlinear Anal. Appl. 8, 225–233, 2017.
  • [24] I. Yesilce and G. Adilov, Hermite-Hadamard type inequalities for $B^{-1}$-convex functions involving generalized fractional integral operators, Filomat 32 (18), 6457–6464, 2018.
  • [25] I. Yesilce and G. Adilov, Hermite-Hadamard Inequalities for L (j)-convex Functions and S (j)-convex Functions, Malaya J. Mat. 3 (3), 346–359, 2015.
  • [26] A.M. Zaki, A.M. El-Nagar, M. El-Bardini and F.A.S. Soliman, Deep learning controller for nonlinear system based on Lyapunov stability criterion, Neural Comput. Appl. 33, 1515–1531, 2021.
There are 26 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Zeynep Eken 0000-0002-8939-4653

Serap Kemali 0000-0001-5804-4127

Gültekin Tınaztepe 0000-0001-7594-1620

Gabil Adilov 0000-0003-3012-6176

Publication Date October 15, 2021
Published in Issue Year 2021 Volume: 50 Issue: 5

Cite

APA Eken, Z., Kemali, S., Tınaztepe, G., Adilov, G. (2021). The Hermite-Hadamard inequalities for $p$-convex functions. Hacettepe Journal of Mathematics and Statistics, 50(5), 1268-1279. https://doi.org/10.15672/hujms.775508
AMA Eken Z, Kemali S, Tınaztepe G, Adilov G. The Hermite-Hadamard inequalities for $p$-convex functions. Hacettepe Journal of Mathematics and Statistics. October 2021;50(5):1268-1279. doi:10.15672/hujms.775508
Chicago Eken, Zeynep, Serap Kemali, Gültekin Tınaztepe, and Gabil Adilov. “The Hermite-Hadamard Inequalities for $p$-Convex Functions”. Hacettepe Journal of Mathematics and Statistics 50, no. 5 (October 2021): 1268-79. https://doi.org/10.15672/hujms.775508.
EndNote Eken Z, Kemali S, Tınaztepe G, Adilov G (October 1, 2021) The Hermite-Hadamard inequalities for $p$-convex functions. Hacettepe Journal of Mathematics and Statistics 50 5 1268–1279.
IEEE Z. Eken, S. Kemali, G. Tınaztepe, and G. Adilov, “The Hermite-Hadamard inequalities for $p$-convex functions”, Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, pp. 1268–1279, 2021, doi: 10.15672/hujms.775508.
ISNAD Eken, Zeynep et al. “The Hermite-Hadamard Inequalities for $p$-Convex Functions”. Hacettepe Journal of Mathematics and Statistics 50/5 (October 2021), 1268-1279. https://doi.org/10.15672/hujms.775508.
JAMA Eken Z, Kemali S, Tınaztepe G, Adilov G. The Hermite-Hadamard inequalities for $p$-convex functions. Hacettepe Journal of Mathematics and Statistics. 2021;50:1268–1279.
MLA Eken, Zeynep et al. “The Hermite-Hadamard Inequalities for $p$-Convex Functions”. Hacettepe Journal of Mathematics and Statistics, vol. 50, no. 5, 2021, pp. 1268-79, doi:10.15672/hujms.775508.
Vancouver Eken Z, Kemali S, Tınaztepe G, Adilov G. The Hermite-Hadamard inequalities for $p$-convex functions. Hacettepe Journal of Mathematics and Statistics. 2021;50(5):1268-79.