Research Article
BibTex RIS Cite

Fusible modules

Year 2024, Volume: 53 Issue: 3, 714 - 723, 27.06.2024
https://doi.org/10.15672/hujms.1206395

Abstract

In this paper, we extend the concept of fusibility to the module-theoretic setting by introducing fusible modules. Let $R$ be a ring with identity, $M$ a right $R$-module and $0\neq m\in M$. Then, $m$ is called fusible if it can be expressed as the sum of a torsion element and a torsion-free element in $M$. The module $M$ is said to be fusible if every non-zero element of $M$ is fusible. We investigate some properties of fusible modules. It is proved that the class of fusible modules is between the classes of torsion-free and nonsingular modules.

References

  • [1] E. Ghashghaei and W. Wm. McGovern, Fusible rings, Comm. Algebra 45 (3), 1151- 1165, 2017.
  • [2] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  • [3] T.K. Lee and Y. Zhou, Reduced modules, in: Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math. 236, 365-377, Dekker, New York, 2004.
  • [4] G. Marks and R. Mazurek, Rings with linearly ordered right annihilators, Israel J. Math. 216, 415-440, 2016.
Year 2024, Volume: 53 Issue: 3, 714 - 723, 27.06.2024
https://doi.org/10.15672/hujms.1206395

Abstract

References

  • [1] E. Ghashghaei and W. Wm. McGovern, Fusible rings, Comm. Algebra 45 (3), 1151- 1165, 2017.
  • [2] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.
  • [3] T.K. Lee and Y. Zhou, Reduced modules, in: Rings, modules, algebras, and abelian groups, Lecture Notes in Pure and Appl. Math. 236, 365-377, Dekker, New York, 2004.
  • [4] G. Marks and R. Mazurek, Rings with linearly ordered right annihilators, Israel J. Math. 216, 415-440, 2016.
There are 4 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Mathematics
Authors

Işıl Baydar 0000-0002-6165-0555

Burcu Üngör

Sait Halicioglu 0000-0003-0792-1868

Abdullah Harmancı 0000-0001-5691-933X

Early Pub Date September 14, 2023
Publication Date June 27, 2024
Published in Issue Year 2024 Volume: 53 Issue: 3

Cite

APA Baydar, I., Üngör, B., Halicioglu, S., Harmancı, A. (2024). Fusible modules. Hacettepe Journal of Mathematics and Statistics, 53(3), 714-723. https://doi.org/10.15672/hujms.1206395
AMA Baydar I, Üngör B, Halicioglu S, Harmancı A. Fusible modules. Hacettepe Journal of Mathematics and Statistics. June 2024;53(3):714-723. doi:10.15672/hujms.1206395
Chicago Baydar, Işıl, Burcu Üngör, Sait Halicioglu, and Abdullah Harmancı. “Fusible Modules”. Hacettepe Journal of Mathematics and Statistics 53, no. 3 (June 2024): 714-23. https://doi.org/10.15672/hujms.1206395.
EndNote Baydar I, Üngör B, Halicioglu S, Harmancı A (June 1, 2024) Fusible modules. Hacettepe Journal of Mathematics and Statistics 53 3 714–723.
IEEE I. Baydar, B. Üngör, S. Halicioglu, and A. Harmancı, “Fusible modules”, Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, pp. 714–723, 2024, doi: 10.15672/hujms.1206395.
ISNAD Baydar, Işıl et al. “Fusible Modules”. Hacettepe Journal of Mathematics and Statistics 53/3 (June 2024), 714-723. https://doi.org/10.15672/hujms.1206395.
JAMA Baydar I, Üngör B, Halicioglu S, Harmancı A. Fusible modules. Hacettepe Journal of Mathematics and Statistics. 2024;53:714–723.
MLA Baydar, Işıl et al. “Fusible Modules”. Hacettepe Journal of Mathematics and Statistics, vol. 53, no. 3, 2024, pp. 714-23, doi:10.15672/hujms.1206395.
Vancouver Baydar I, Üngör B, Halicioglu S, Harmancı A. Fusible modules. Hacettepe Journal of Mathematics and Statistics. 2024;53(3):714-23.