Research Article
BibTex RIS Cite

Coregular sequences and top local homology modules

Year 2022, , 38 - 48, 17.01.2022
https://doi.org/10.24330/ieja.1058393

Abstract

 In this paper, we show that if $M$ is a non-zero Artinian $R$-module and $\underline{x}:=x_1,\ldots,x_n$ is an $M$-coregular sequence, then $x_1,\ldots,x_n$ is a $D(H_n^{\underline{x}}(M))$-coregular sequence. Moreover, if $R$ is complete with respect to $I$-adic topology and $d=\mathrm{Ndim} M$, then $\dim H^I_d(M) \le d$ and $\mathrm{depth} H_I^d(M)\ge \min\{{2, d}\}$ whenever $H^I_d(M) \ne 0.$

References

  • K. Bahmanpour, A note on homological dimensions of Artinian local cohomology modules, Canad. Math. Bull., 56(3) (2013), 491-499.
  • K. Bahmanpour, A complex of modules and its applications to local cohomology and extension functors, Math. Scand., 117(1) (2015), 150-160.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
  • N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc., 131(1) (2001), 61-72.
  • N. T. Cuong and T. T. Nam, On the co-localization, co-support and co-associated primes of local homology modules, Vietnam J. Math., 29(4) (2001), 359-368.
  • N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra, 319(11) (2008), 4712-4737.
  • N. T. Cuong and L. T. Nhan, On the Noetherian dimension of Artinian modules, Vietnam J. Math., 30(2) (2002), 121-130.
  • J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra, 149(2) (1992), 438-453.
  • D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford Ser.(2), 41(164) (1990), 419-429.
  • E. Matlis, The Koszul complex and duality, Comm. Algebra, 1 (1974), 87-144.
  • T. T. Nam, On local homology theory for linearly compact modules, Ph.D. Thesis, Institute of Mathematics, Hanoi, 2001.
  • T. T. Nam, On the finiteness of co-associated primes of local homology modules, J. Math. Kyoto Univ., 48(3) (2008), 521-527.
  • A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J., 6(3) (1976), 573-587.
  • R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford Ser. (2), 26(103) (1975), 269-273.
  • A-M. Simon, Some homological properties of complete modules, Math. Proc. Cambridge Philos. Soc., 108(2) (1990), 231-246.
  • Z. Tang and H. Zakeri, Co-cohen-macaulay modules and modules of generalized fractions, Comm. Algebra, 22(6) (1994), 2173-2204.
  • A. A. Tarrio, A. J. Lopez and J. Lipman, Local homology and cohomology on schemes, Ann. Sci. cole Norm. Sup. (4), 30(1) (1997), 1-39.
  • S. Yassemi, Coassociated primes, Comm. Algebra, 23(4) (1995), 1473-1498.
Year 2022, , 38 - 48, 17.01.2022
https://doi.org/10.24330/ieja.1058393

Abstract

References

  • K. Bahmanpour, A note on homological dimensions of Artinian local cohomology modules, Canad. Math. Bull., 56(3) (2013), 491-499.
  • K. Bahmanpour, A complex of modules and its applications to local cohomology and extension functors, Math. Scand., 117(1) (2015), 150-160.
  • W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, 1993.
  • N. T. Cuong and T. T. Nam, The I-adic completion and local homology for Artinian modules, Math. Proc. Cambridge Philos. Soc., 131(1) (2001), 61-72.
  • N. T. Cuong and T. T. Nam, On the co-localization, co-support and co-associated primes of local homology modules, Vietnam J. Math., 29(4) (2001), 359-368.
  • N. T. Cuong and T. T. Nam, A local homology theory for linearly compact modules, J. Algebra, 319(11) (2008), 4712-4737.
  • N. T. Cuong and L. T. Nhan, On the Noetherian dimension of Artinian modules, Vietnam J. Math., 30(2) (2002), 121-130.
  • J. P. C. Greenlees and J. P. May, Derived functors of I-adic completion and local homology, J. Algebra, 149(2) (1992), 438-453.
  • D. Kirby, Dimension and length for Artinian modules, Quart. J. Math. Oxford Ser.(2), 41(164) (1990), 419-429.
  • E. Matlis, The Koszul complex and duality, Comm. Algebra, 1 (1974), 87-144.
  • T. T. Nam, On local homology theory for linearly compact modules, Ph.D. Thesis, Institute of Mathematics, Hanoi, 2001.
  • T. T. Nam, On the finiteness of co-associated primes of local homology modules, J. Math. Kyoto Univ., 48(3) (2008), 521-527.
  • A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J., 6(3) (1976), 573-587.
  • R. N. Roberts, Krull dimension for Artinian modules over quasi local commutative rings, Quart. J. Math. Oxford Ser. (2), 26(103) (1975), 269-273.
  • A-M. Simon, Some homological properties of complete modules, Math. Proc. Cambridge Philos. Soc., 108(2) (1990), 231-246.
  • Z. Tang and H. Zakeri, Co-cohen-macaulay modules and modules of generalized fractions, Comm. Algebra, 22(6) (1994), 2173-2204.
  • A. A. Tarrio, A. J. Lopez and J. Lipman, Local homology and cohomology on schemes, Ann. Sci. cole Norm. Sup. (4), 30(1) (1997), 1-39.
  • S. Yassemi, Coassociated primes, Comm. Algebra, 23(4) (1995), 1473-1498.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Nguyen Minh Trı This is me

Publication Date January 17, 2022
Published in Issue Year 2022

Cite

APA Trı, N. M. (2022). Coregular sequences and top local homology modules. International Electronic Journal of Algebra, 31(31), 38-48. https://doi.org/10.24330/ieja.1058393
AMA Trı NM. Coregular sequences and top local homology modules. IEJA. January 2022;31(31):38-48. doi:10.24330/ieja.1058393
Chicago Trı, Nguyen Minh. “Coregular Sequences and Top Local Homology Modules”. International Electronic Journal of Algebra 31, no. 31 (January 2022): 38-48. https://doi.org/10.24330/ieja.1058393.
EndNote Trı NM (January 1, 2022) Coregular sequences and top local homology modules. International Electronic Journal of Algebra 31 31 38–48.
IEEE N. M. Trı, “Coregular sequences and top local homology modules”, IEJA, vol. 31, no. 31, pp. 38–48, 2022, doi: 10.24330/ieja.1058393.
ISNAD Trı, Nguyen Minh. “Coregular Sequences and Top Local Homology Modules”. International Electronic Journal of Algebra 31/31 (January 2022), 38-48. https://doi.org/10.24330/ieja.1058393.
JAMA Trı NM. Coregular sequences and top local homology modules. IEJA. 2022;31:38–48.
MLA Trı, Nguyen Minh. “Coregular Sequences and Top Local Homology Modules”. International Electronic Journal of Algebra, vol. 31, no. 31, 2022, pp. 38-48, doi:10.24330/ieja.1058393.
Vancouver Trı NM. Coregular sequences and top local homology modules. IEJA. 2022;31(31):38-4.