Research Article
BibTex RIS Cite

Counting non-isomorphic generalized Hamilton quaternions

Year 2022, , 143 - 160, 17.01.2022
https://doi.org/10.24330/ieja.1058426

Abstract

In this paper we study the isomorphisms of generalized Hamilton quaternions $\Big(\frac{a,b}{R}\Big)$ where $R$ is a finite unital commutative ring of odd characteristic and $a,b \in R$. We obtain the number of non-isomorphic classes of generalized Hamilton quaternions in the case where $R$ is a principal ideal ring. This extends the case $R=\mathbb{Z}/n\mathbb{Z}$
where $n$ is an odd integer.

References

  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, 1969.
  • J. M. Grau, C. Miguel and A. M. Oller-Marcen, On the structure of quaternion rings over Z=nZ, Adv. Appl. Clifford Algebr., 25(4) (2015), 875-887.
  • J. M. Grau, C. Miguel and A. M. Oller-Marcen, Quaternion rings over Z=nZ for an odd n, Adv. Appl. Clifford Algebr., 28(1) (2018), 17 (14 pp).
  • B. H. Gross and M. W. Lucianovic, On cubic rings and quaternion rings, J. Number Theory, 129(6) (2009), 1468-1478.
  • A. J. Hahn, Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups, Springer-Verlag, New York, 1994.
  • T. Kanzaki, On non-commutative quadratic extensions of a commutative ring, Osaka Math. J., 10 (1973), 597-605.
  • M. A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften (no. 294), Springer-Verlag, Berlin, 1991.
  • B. R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics (Vol. 28), Marcel Dekker, New York, 1974.
  • C. Miguel and R. Serodio, On the structure of quaternion rings over Zp, Int. J. Algebra, 5(27) (2011), 1313-1325.
  • S. Priess-Crampe and P. Ribenboim, A general Hensel's lemma, J. Algebra, 232(1) (2000), 269-281.
  • R. S. Pierce, Associative Algebras, Springer-Verlag, New York-Berlin, 1982.
  • D. Savin, About Special Elements in Quaternion Algebras Over Finite Fields, Adv. Appl. Clifford Algebr., 27(2) (2017), 1801-1813.
  • C. Small, Arithmetic of Finite Fields, Marcel Dekker, New York, 1991.
  • A. A. Tuganbaev, Quaternion algebras over commutative rings, Math. Notes, 53(1-2) (1993), 204-207.
  • J. Voight, Characterizing quaternion rings over an arbitrary base, J. Reine Angew. Math., 657 (2011), 113-134.
  • J. Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, Quadratic and Higher Degree Forms, Dev. Math., vol. 31, Springer, New York, 2013, 255-298.
  • A. Weil, Basic Number Theory, Die Grundlehren der Mathematischen Wissenschaften (Band 144), Springer-Verlag, New York-Berlin, 1974.
Year 2022, , 143 - 160, 17.01.2022
https://doi.org/10.24330/ieja.1058426

Abstract

References

  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass.-London-Don Mills, 1969.
  • J. M. Grau, C. Miguel and A. M. Oller-Marcen, On the structure of quaternion rings over Z=nZ, Adv. Appl. Clifford Algebr., 25(4) (2015), 875-887.
  • J. M. Grau, C. Miguel and A. M. Oller-Marcen, Quaternion rings over Z=nZ for an odd n, Adv. Appl. Clifford Algebr., 28(1) (2018), 17 (14 pp).
  • B. H. Gross and M. W. Lucianovic, On cubic rings and quaternion rings, J. Number Theory, 129(6) (2009), 1468-1478.
  • A. J. Hahn, Quadratic Algebras, Clifford Algebras, and Arithmetic Witt Groups, Springer-Verlag, New York, 1994.
  • T. Kanzaki, On non-commutative quadratic extensions of a commutative ring, Osaka Math. J., 10 (1973), 597-605.
  • M. A. Knus, Quadratic and Hermitian Forms Over Rings, Grundlehren der Mathematischen Wissenschaften (no. 294), Springer-Verlag, Berlin, 1991.
  • B. R. McDonald, Finite Rings with Identity, Pure and Applied Mathematics (Vol. 28), Marcel Dekker, New York, 1974.
  • C. Miguel and R. Serodio, On the structure of quaternion rings over Zp, Int. J. Algebra, 5(27) (2011), 1313-1325.
  • S. Priess-Crampe and P. Ribenboim, A general Hensel's lemma, J. Algebra, 232(1) (2000), 269-281.
  • R. S. Pierce, Associative Algebras, Springer-Verlag, New York-Berlin, 1982.
  • D. Savin, About Special Elements in Quaternion Algebras Over Finite Fields, Adv. Appl. Clifford Algebr., 27(2) (2017), 1801-1813.
  • C. Small, Arithmetic of Finite Fields, Marcel Dekker, New York, 1991.
  • A. A. Tuganbaev, Quaternion algebras over commutative rings, Math. Notes, 53(1-2) (1993), 204-207.
  • J. Voight, Characterizing quaternion rings over an arbitrary base, J. Reine Angew. Math., 657 (2011), 113-134.
  • J. Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, Quadratic and Higher Degree Forms, Dev. Math., vol. 31, Springer, New York, 2013, 255-298.
  • A. Weil, Basic Number Theory, Die Grundlehren der Mathematischen Wissenschaften (Band 144), Springer-Verlag, New York-Berlin, 1974.
There are 17 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Jose Maria Grau This is me

Celino Mıguel This is me

Antonio M. Oller-marcen This is me

Publication Date January 17, 2022
Published in Issue Year 2022

Cite

APA Grau, J. M., Mıguel, C., & Oller-marcen, A. M. (2022). Counting non-isomorphic generalized Hamilton quaternions. International Electronic Journal of Algebra, 31(31), 143-160. https://doi.org/10.24330/ieja.1058426
AMA Grau JM, Mıguel C, Oller-marcen AM. Counting non-isomorphic generalized Hamilton quaternions. IEJA. January 2022;31(31):143-160. doi:10.24330/ieja.1058426
Chicago Grau, Jose Maria, Celino Mıguel, and Antonio M. Oller-marcen. “Counting Non-Isomorphic Generalized Hamilton Quaternions”. International Electronic Journal of Algebra 31, no. 31 (January 2022): 143-60. https://doi.org/10.24330/ieja.1058426.
EndNote Grau JM, Mıguel C, Oller-marcen AM (January 1, 2022) Counting non-isomorphic generalized Hamilton quaternions. International Electronic Journal of Algebra 31 31 143–160.
IEEE J. M. Grau, C. Mıguel, and A. M. Oller-marcen, “Counting non-isomorphic generalized Hamilton quaternions”, IEJA, vol. 31, no. 31, pp. 143–160, 2022, doi: 10.24330/ieja.1058426.
ISNAD Grau, Jose Maria et al. “Counting Non-Isomorphic Generalized Hamilton Quaternions”. International Electronic Journal of Algebra 31/31 (January 2022), 143-160. https://doi.org/10.24330/ieja.1058426.
JAMA Grau JM, Mıguel C, Oller-marcen AM. Counting non-isomorphic generalized Hamilton quaternions. IEJA. 2022;31:143–160.
MLA Grau, Jose Maria et al. “Counting Non-Isomorphic Generalized Hamilton Quaternions”. International Electronic Journal of Algebra, vol. 31, no. 31, 2022, pp. 143-60, doi:10.24330/ieja.1058426.
Vancouver Grau JM, Mıguel C, Oller-marcen AM. Counting non-isomorphic generalized Hamilton quaternions. IEJA. 2022;31(31):143-60.