Research Article
BibTex RIS Cite

The structure of matrix polynomial algebras

Year 2023, , 137 - 177, 09.01.2023
https://doi.org/10.24330/ieja.1151001

Abstract

This work formally introduces and starts investigating the structure of matrix polynomial algebra extensions
of a coefficient algebra by (elementary) matrix-variables over
a ground polynomial ring in not necessary commuting variables.
These matrix subalgebras of full matrix rings over polynomial rings show up
in noncommutative algebraic geometry. We carefully study their (one-sided or bilateral) noetherianity, obtaining a precise lift of the Hilbert Basis Theorem when the
ground ring is either a commutative polynomial ring, a free noncommutative polynomial ring or a skew polynomial ring extension by a free commutative term-ordered monoid.
We equally address the natural but rather delicate question of recognising which matrix polynomial algebras are Cayley-Hamilton algebras,
which are interesting noncommutative algebras arising from the study of $\mathrm{Gl}_{n}$-varieties.

References

  • I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Volume 1 of London Mathematical Society Student Texts, Cambridge University Press, New York, 2006.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
  • D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer, 4th edition, 2015.
  • D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
  • E. Eriksen, An Introduction to Noncommutative Deformations of Modules, In Noncommutative Algebra and Geometry, 243, 90-125, Lect. Notes Pure Appl. Math., Boca Raton, FL, Chapman & Hall Crc Edition, 2006.
  • B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., 2004.
  • T. W. Hungerford, Algebra, Graduate Texts in Mathematics, 73, Springer-Verlag, New York, 1974.
  • N. Jacobson, Basic Algebra II, W. H. Freeman and Company, Second Edition, 1989.
  • A. Kandri-Rody and W. Weispfenning, Noncommutative Gröbner bases in algebras of solvable type, J. Symbolic Comput., 9 (1990), 1-26.
  • H. Kredel, Solvable Polynomial Rings, PhD thesis, Passau, 1992.
  • O. A. Laudal, Noncommutative deformations of modules, Homology Homotopy and Applications, 4 (2002), 357-396.
  • O. A. Laudal, Noncommutative algebraic geometry, Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001). Rev. Mat. Iberoamericana, 19(2) (2003), 509-580.
  • O. A. Laudal, Noncommutative Algebraic Geometry, In Proc. NATO Advanced Research Workshop on Computational Commutative and Noncommutative Algebraic Geometry, vol. 196 of NATO: Computer and Systems Sciences, 1-43. IOS Press, s. cojocaru et al. (eds) edition, 2005.
  • L. Le Bruyn, Noncommutative Geometry and Cayley-Smooth Orders, Number 290 in Pure and Applied Mathematics. Boca Raton, FL 33487-2742, Chapman & Hall Crc Edition, 2008.
  • T. Mora, Solving Polynomial Equation Systems, Cambridge University Press, Encyclopedia of Mathematics and its Applications Edition, 158, 2016.
  • B. Nguefack and E. Pola, Effective Buchberger-Zacharias-Weispfenning theory of skew polynomial extensions of subbilateral coherent rings, J. Symbolic Comput., 99 (2020), 50-107.
  • A. Siqveland, Geometry of noncommutative k-algebras, J. Gen. Lie Theory Appl., 5 (2011), Art. ID G110107 (12 pp).
  • A. Siqveland, Introduction to non commutative algebraic geometry, J. Phys. Math., 133(6) (2015), Doi:10.4172/2090-0902.1000133.
Year 2023, , 137 - 177, 09.01.2023
https://doi.org/10.24330/ieja.1151001

Abstract

References

  • I. Assem, D. Simson and A. Skowronski, Elements of the Representation Theory of Associative Algebras, Volume 1 of London Mathematical Society Student Texts, Cambridge University Press, New York, 2006.
  • M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Massachusetts, 1969.
  • D. A. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Undergraduate Texts in Mathematics, Springer, 4th edition, 2015.
  • D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, 150, Springer-Verlag, New York, 1995.
  • E. Eriksen, An Introduction to Noncommutative Deformations of Modules, In Noncommutative Algebra and Geometry, 243, 90-125, Lect. Notes Pure Appl. Math., Boca Raton, FL, Chapman & Hall Crc Edition, 2006.
  • B. J. Gardner and R. Wiegandt, Radical Theory of Rings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., 2004.
  • T. W. Hungerford, Algebra, Graduate Texts in Mathematics, 73, Springer-Verlag, New York, 1974.
  • N. Jacobson, Basic Algebra II, W. H. Freeman and Company, Second Edition, 1989.
  • A. Kandri-Rody and W. Weispfenning, Noncommutative Gröbner bases in algebras of solvable type, J. Symbolic Comput., 9 (1990), 1-26.
  • H. Kredel, Solvable Polynomial Rings, PhD thesis, Passau, 1992.
  • O. A. Laudal, Noncommutative deformations of modules, Homology Homotopy and Applications, 4 (2002), 357-396.
  • O. A. Laudal, Noncommutative algebraic geometry, Proceedings of the International Conference on Algebraic Geometry and Singularities (Spanish) (Sevilla, 2001). Rev. Mat. Iberoamericana, 19(2) (2003), 509-580.
  • O. A. Laudal, Noncommutative Algebraic Geometry, In Proc. NATO Advanced Research Workshop on Computational Commutative and Noncommutative Algebraic Geometry, vol. 196 of NATO: Computer and Systems Sciences, 1-43. IOS Press, s. cojocaru et al. (eds) edition, 2005.
  • L. Le Bruyn, Noncommutative Geometry and Cayley-Smooth Orders, Number 290 in Pure and Applied Mathematics. Boca Raton, FL 33487-2742, Chapman & Hall Crc Edition, 2008.
  • T. Mora, Solving Polynomial Equation Systems, Cambridge University Press, Encyclopedia of Mathematics and its Applications Edition, 158, 2016.
  • B. Nguefack and E. Pola, Effective Buchberger-Zacharias-Weispfenning theory of skew polynomial extensions of subbilateral coherent rings, J. Symbolic Comput., 99 (2020), 50-107.
  • A. Siqveland, Geometry of noncommutative k-algebras, J. Gen. Lie Theory Appl., 5 (2011), Art. ID G110107 (12 pp).
  • A. Siqveland, Introduction to non commutative algebraic geometry, J. Phys. Math., 133(6) (2015), Doi:10.4172/2090-0902.1000133.
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Bertrand Nguefack This is me

Publication Date January 9, 2023
Published in Issue Year 2023

Cite

APA Nguefack, B. (2023). The structure of matrix polynomial algebras. International Electronic Journal of Algebra, 33(33), 137-177. https://doi.org/10.24330/ieja.1151001
AMA Nguefack B. The structure of matrix polynomial algebras. IEJA. January 2023;33(33):137-177. doi:10.24330/ieja.1151001
Chicago Nguefack, Bertrand. “The Structure of Matrix Polynomial Algebras”. International Electronic Journal of Algebra 33, no. 33 (January 2023): 137-77. https://doi.org/10.24330/ieja.1151001.
EndNote Nguefack B (January 1, 2023) The structure of matrix polynomial algebras. International Electronic Journal of Algebra 33 33 137–177.
IEEE B. Nguefack, “The structure of matrix polynomial algebras”, IEJA, vol. 33, no. 33, pp. 137–177, 2023, doi: 10.24330/ieja.1151001.
ISNAD Nguefack, Bertrand. “The Structure of Matrix Polynomial Algebras”. International Electronic Journal of Algebra 33/33 (January 2023), 137-177. https://doi.org/10.24330/ieja.1151001.
JAMA Nguefack B. The structure of matrix polynomial algebras. IEJA. 2023;33:137–177.
MLA Nguefack, Bertrand. “The Structure of Matrix Polynomial Algebras”. International Electronic Journal of Algebra, vol. 33, no. 33, 2023, pp. 137-7, doi:10.24330/ieja.1151001.
Vancouver Nguefack B. The structure of matrix polynomial algebras. IEJA. 2023;33(33):137-7.