Research Article
BibTex RIS Cite
Year 2018, Volume: 24 Issue: 24, 18 - 30, 05.07.2018
https://doi.org/10.24330/ieja.440141

Abstract

References

  • G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*-supplemented modules, Glasg. Math. J., 52(A) (2010), 41-52.
  • E. Buyukasik and D. Pusat-Yilmaz, Modules whose maximal submodules are supplements, Hacet. J. Math. Stat., 39(4) (2010), 477-487.
  • M. D. Cisse and D. Sow, On generalizations of essential and small submodules, Southeast Asian Bull. Math., 41(3) (2017), 369-383.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006.
  • C. Nebiyev and A. Pancar, On supplement submodules, Ukrainian Math. J., 65(7) (2013), 1071-1078.
  • P. F. Smith, Module with coindependent maximal submodules, J. Algebra Appl., 10(1) (2011), 73-99.
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
  • H. Zoschinger, Koatomare moduln, Math. Z., 170(3) (1980), 221-232.

SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY

Year 2018, Volume: 24 Issue: 24, 18 - 30, 05.07.2018
https://doi.org/10.24330/ieja.440141

Abstract

Let R be a ring with identity. A right R-module M has the com-
plete max-property if the maximal submodules of M are completely coindepen-
dent (i.e., every maximal submodule of M does not contain the intersection
of the other maximal submodules of M). A right R-module is said to be a
good module provided every proper submodule of M containing Rad(M) is an
intersection of maximal submodules of M. We obtain a new characterization
of good modules. Also, we study good modules which have the complete max-
property. The second part of this paper is devoted to investigate supplements
in a coatomic module which has the complete max-property.

References

  • G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*-supplemented modules, Glasg. Math. J., 52(A) (2010), 41-52.
  • E. Buyukasik and D. Pusat-Yilmaz, Modules whose maximal submodules are supplements, Hacet. J. Math. Stat., 39(4) (2010), 477-487.
  • M. D. Cisse and D. Sow, On generalizations of essential and small submodules, Southeast Asian Bull. Math., 41(3) (2017), 369-383.
  • J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules, Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhauser Verlag, Basel, 2006.
  • C. Nebiyev and A. Pancar, On supplement submodules, Ukrainian Math. J., 65(7) (2013), 1071-1078.
  • P. F. Smith, Module with coindependent maximal submodules, J. Algebra Appl., 10(1) (2011), 73-99.
  • R. Wisbauer, Foundations of Module and Ring Theory, Algebra, Logic and Applications, 3, Gordon and Breach Science Publishers, Philadelphia, PA, 1991.
  • H. Zoschinger, Koatomare moduln, Math. Z., 170(3) (1980), 221-232.
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Articles
Authors

Mame Demba Cisse This is me

Lamine Ngom This is me

Djiby Sow This is me

Rachid Tribak

Publication Date July 5, 2018
Published in Issue Year 2018 Volume: 24 Issue: 24

Cite

APA Cisse, M. D., Ngom, L., Sow, D., Tribak, R. (2018). SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY. International Electronic Journal of Algebra, 24(24), 18-30. https://doi.org/10.24330/ieja.440141
AMA Cisse MD, Ngom L, Sow D, Tribak R. SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY. IEJA. July 2018;24(24):18-30. doi:10.24330/ieja.440141
Chicago Cisse, Mame Demba, Lamine Ngom, Djiby Sow, and Rachid Tribak. “SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY”. International Electronic Journal of Algebra 24, no. 24 (July 2018): 18-30. https://doi.org/10.24330/ieja.440141.
EndNote Cisse MD, Ngom L, Sow D, Tribak R (July 1, 2018) SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY. International Electronic Journal of Algebra 24 24 18–30.
IEEE M. D. Cisse, L. Ngom, D. Sow, and R. Tribak, “SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY”, IEJA, vol. 24, no. 24, pp. 18–30, 2018, doi: 10.24330/ieja.440141.
ISNAD Cisse, Mame Demba et al. “SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY”. International Electronic Journal of Algebra 24/24 (July 2018), 18-30. https://doi.org/10.24330/ieja.440141.
JAMA Cisse MD, Ngom L, Sow D, Tribak R. SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY. IEJA. 2018;24:18–30.
MLA Cisse, Mame Demba et al. “SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY”. International Electronic Journal of Algebra, vol. 24, no. 24, 2018, pp. 18-30, doi:10.24330/ieja.440141.
Vancouver Cisse MD, Ngom L, Sow D, Tribak R. SUPPLEMENTS IN COATOMIC MODULES HAVING THE COMPLETE MAX-PROPERTY. IEJA. 2018;24(24):18-30.