Research Article
BibTex RIS Cite

Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds

Year 2022, , 202 - 213, 31.10.2022
https://doi.org/10.36890/iejg.1085596

Abstract

The aim of the present paper is to study half-lightlike submanifolds of a semi-Riemannian
manifold endowed with a metallic structure. We introduce a special half-lightlike submanifold
called screen semi-invariant half lightlike submanifold in metallic semi-Riemannian manifolds
and give an example. We present necessary and sufficient conditions for the distributions
included in the definition of such half lightlike submanifolds to be integrable. Moreover, we
analyze geometry of a screen semi-invariant half lightlike submanifold in a locally metallic semi-
Riemannian manifold when it is totally geodesic and screen conformal.

References

  • [1] Acet, B. E.: Lightlike hypersurfaces of metallic semi-Riemannian manifolds. International Journal of Geometric Methods in Modern Physic. 2018; DOI:10.1142/S0219887818502018.
  • [2] Blaga, A. M., Hretcanu, C. E.: Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold. Novi Sad Journal Mathematics. 48 (2), 55-80 (2018).
  • [3] Crasmareanu, M., Hretcanu C. E.: Golden differential geometry. Chaos, Solitons & Fractals 38, 1229-1238 (2008).
  • [4] De Spinadel, V. W.: On specification of the onset to chaos. Chaos, Solitons & Fractals. 8 (10), 1631-1643 (1997).
  • [5] De Spinadel, V. W.: The metallic means family and forbidden symmetries. International Mathematics Journal. 2 (3), 279-288 (2002).
  • [6] De Spinadel, V. W.: The metallic means family and renormalization group techniques. Proceedings of the Steklov Institute of Mathematics., Control in Dynamic Systems. 1, 194-209 (2000).
  • [7] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and Its Applications. Kluwer Publisher, (1996).
  • [8] Duggal K. L., Jin, D. H.: Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 22, 121-161 (1999).
  • [9] Duggal, K. L., Şahin, B.: Screen conformal half-lightlike submanifolds. International Journal of Matematics and Matematical Sciences. 68 , 3737-3753 (2004).
  • [10] Hretcanu, C. E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191 (2009).
  • [11] Jin, D. H.: Geometry of screen conformal real half-lightlike submanifolds. Bulletin of the Korean Mathematical Society. 47 (4), 701-714 (2010).
  • [12] Jin, D. H.: Real half-lightlike submanifolds of an indefinite Kaehler manifold. Communication Korean Mathematical Society. 26 (4), 635-647 (2011).
  • [13] Duggal, K. L., Şahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [14] Erdo˘gan, F. E.: Transversal lightlike submanifolds of metallic semi-Riemannian manifold. Turkish Journal of Mathematics. 42, 3133-3148 (2018).
  • [15] Erdoğan, F. E., Yüksel Perktaş, S., Acet, B. E., Blaga, A. M.: Screen transversal lightlike submanifolds of metallic semi-Riemannian manifolds. Journal of Geometry and Physics. 142, 111-120 (2019).
  • [16] Hretcanu, C. E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54, 15-27 (2013).
  • [17] Kılıç, E., Şahin, B., Keleş, S.: Screen semi invariant lightlike submanifolds of semi Riemannian product manifolds. International Electronic Journal of Geometry. 4, 120-135 (2011).
  • [18] Poyraz, NÖ., Yaşar E.: Lightlike hypersurfaces of a golden semi-Riemannian manifold. Mediterrenean Journal of Mathematics. 14 (2017).
  • [19] Goldberg, S. I., Yano, K.: Polynomial structures on manifolds. Kodai Mathematical Seminar Reports. 22, 199-218 (1970).
  • [20] Goldberg, S. I., Petridis, N. C.: Differentiable solutions of algebraic equations on manifolds. Kodai Mathematical Seminar Reports. 25, 111-128 (1973).
  • [21] Poyraz, N., Yaşar, E.: Lightlike submanifolds of golden semi-Riemannian manifolds. ournal of Geometry and Physics. 141, 92-104 (2019).
  • [22] Poyraz, N.: Screen semi invariant lightlike submanifolds of golden semi-Riemannian manifolds. International Electronic Journal of Geometry. 14 (1), 207-216 (2021).
  • [23] Poyraz, N, Yaşar, E., Dönmez, D.: Half-lightlike submanifolds of a golden semi-Riemannian manifold. Kragujevac Journal of Mathematics. 48 (1), 99-122 (2024).
Year 2022, , 202 - 213, 31.10.2022
https://doi.org/10.36890/iejg.1085596

Abstract

References

  • [1] Acet, B. E.: Lightlike hypersurfaces of metallic semi-Riemannian manifolds. International Journal of Geometric Methods in Modern Physic. 2018; DOI:10.1142/S0219887818502018.
  • [2] Blaga, A. M., Hretcanu, C. E.: Invariant, anti-invariant and slant submanifolds of a metallic Riemannian manifold. Novi Sad Journal Mathematics. 48 (2), 55-80 (2018).
  • [3] Crasmareanu, M., Hretcanu C. E.: Golden differential geometry. Chaos, Solitons & Fractals 38, 1229-1238 (2008).
  • [4] De Spinadel, V. W.: On specification of the onset to chaos. Chaos, Solitons & Fractals. 8 (10), 1631-1643 (1997).
  • [5] De Spinadel, V. W.: The metallic means family and forbidden symmetries. International Mathematics Journal. 2 (3), 279-288 (2002).
  • [6] De Spinadel, V. W.: The metallic means family and renormalization group techniques. Proceedings of the Steklov Institute of Mathematics., Control in Dynamic Systems. 1, 194-209 (2000).
  • [7] Duggal, K. L., Bejancu, A.: Lightlike submanifolds of semi-Riemannian manifolds and applications. Mathematics and Its Applications. Kluwer Publisher, (1996).
  • [8] Duggal K. L., Jin, D. H.: Half-lightlike submanifolds of codimension 2. Math. J. Toyama Univ. 22, 121-161 (1999).
  • [9] Duggal, K. L., Şahin, B.: Screen conformal half-lightlike submanifolds. International Journal of Matematics and Matematical Sciences. 68 , 3737-3753 (2004).
  • [10] Hretcanu, C. E., Crasmareanu, M.: Applications of the golden ratio on Riemannian manifolds. Turkish Journal of Mathematics. 33 (2), 179-191 (2009).
  • [11] Jin, D. H.: Geometry of screen conformal real half-lightlike submanifolds. Bulletin of the Korean Mathematical Society. 47 (4), 701-714 (2010).
  • [12] Jin, D. H.: Real half-lightlike submanifolds of an indefinite Kaehler manifold. Communication Korean Mathematical Society. 26 (4), 635-647 (2011).
  • [13] Duggal, K. L., Şahin, B.: Differential geometry of lightlike submanifolds. Frontiers in Mathematics. Birkhäuser Verlag, Basel (2010).
  • [14] Erdo˘gan, F. E.: Transversal lightlike submanifolds of metallic semi-Riemannian manifold. Turkish Journal of Mathematics. 42, 3133-3148 (2018).
  • [15] Erdoğan, F. E., Yüksel Perktaş, S., Acet, B. E., Blaga, A. M.: Screen transversal lightlike submanifolds of metallic semi-Riemannian manifolds. Journal of Geometry and Physics. 142, 111-120 (2019).
  • [16] Hretcanu, C. E., Crasmareanu, M.: Metallic structures on Riemannian manifolds. Revista de la Unión Matemática Argentina. 54, 15-27 (2013).
  • [17] Kılıç, E., Şahin, B., Keleş, S.: Screen semi invariant lightlike submanifolds of semi Riemannian product manifolds. International Electronic Journal of Geometry. 4, 120-135 (2011).
  • [18] Poyraz, NÖ., Yaşar E.: Lightlike hypersurfaces of a golden semi-Riemannian manifold. Mediterrenean Journal of Mathematics. 14 (2017).
  • [19] Goldberg, S. I., Yano, K.: Polynomial structures on manifolds. Kodai Mathematical Seminar Reports. 22, 199-218 (1970).
  • [20] Goldberg, S. I., Petridis, N. C.: Differentiable solutions of algebraic equations on manifolds. Kodai Mathematical Seminar Reports. 25, 111-128 (1973).
  • [21] Poyraz, N., Yaşar, E.: Lightlike submanifolds of golden semi-Riemannian manifolds. ournal of Geometry and Physics. 141, 92-104 (2019).
  • [22] Poyraz, N.: Screen semi invariant lightlike submanifolds of golden semi-Riemannian manifolds. International Electronic Journal of Geometry. 14 (1), 207-216 (2021).
  • [23] Poyraz, N, Yaşar, E., Dönmez, D.: Half-lightlike submanifolds of a golden semi-Riemannian manifold. Kragujevac Journal of Mathematics. 48 (1), 99-122 (2024).
There are 23 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Bilal Eftal Acet 0000-0002-0190-3741

Feyza Esra Erdoğan 0000-0003-0568-7510

Selcen Yüksel Perktaş 0000-0002-8848-0621

Publication Date October 31, 2022
Acceptance Date July 27, 2022
Published in Issue Year 2022

Cite

APA Acet, B. E., Erdoğan, F. E., & Yüksel Perktaş, S. (2022). Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds. International Electronic Journal of Geometry, 15(2), 202-213. https://doi.org/10.36890/iejg.1085596
AMA Acet BE, Erdoğan FE, Yüksel Perktaş S. Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds. Int. Electron. J. Geom. October 2022;15(2):202-213. doi:10.36890/iejg.1085596
Chicago Acet, Bilal Eftal, Feyza Esra Erdoğan, and Selcen Yüksel Perktaş. “Half-Lightlike Submanifolds of Metallic Semi-Riemannian Manifolds”. International Electronic Journal of Geometry 15, no. 2 (October 2022): 202-13. https://doi.org/10.36890/iejg.1085596.
EndNote Acet BE, Erdoğan FE, Yüksel Perktaş S (October 1, 2022) Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds. International Electronic Journal of Geometry 15 2 202–213.
IEEE B. E. Acet, F. E. Erdoğan, and S. Yüksel Perktaş, “Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds”, Int. Electron. J. Geom., vol. 15, no. 2, pp. 202–213, 2022, doi: 10.36890/iejg.1085596.
ISNAD Acet, Bilal Eftal et al. “Half-Lightlike Submanifolds of Metallic Semi-Riemannian Manifolds”. International Electronic Journal of Geometry 15/2 (October 2022), 202-213. https://doi.org/10.36890/iejg.1085596.
JAMA Acet BE, Erdoğan FE, Yüksel Perktaş S. Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds. Int. Electron. J. Geom. 2022;15:202–213.
MLA Acet, Bilal Eftal et al. “Half-Lightlike Submanifolds of Metallic Semi-Riemannian Manifolds”. International Electronic Journal of Geometry, vol. 15, no. 2, 2022, pp. 202-13, doi:10.36890/iejg.1085596.
Vancouver Acet BE, Erdoğan FE, Yüksel Perktaş S. Half-Lightlike Submanifolds of Metallic semi-Riemannian Manifolds. Int. Electron. J. Geom. 2022;15(2):202-13.