Research Article
BibTex RIS Cite
Year 2016, , 38 - 44, 30.04.2016
https://doi.org/10.36890/iejg.591885

Abstract

References

  • [1] Duggal, Krishan L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Academic Publishers, Dordrecht, 1996.
  • [2] Greub, W., Linear Algebra. Springer-Verlag, 1967.
  • [3] Hilbert, D., Theory of algebraic invariants. Cambridge Univ.Press, New York, 1993.
  • 4] Höfer,R., m-point invariants of real geometries. Beitrage Algebra Geom. 40(1999), 261-266.
  • [5] Khadjiev, D. and Göksal, Y.,Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space. Adv.Appl. Clifford Algebras, Online First Article (2015),1-24.
  • [6] Misiak, A. and Stasiak, E., Equivariant maps between certain G-spaces with G=O(n-1,1).Mathematica Bohemica 3(2001), 555-560.
  • [7] Naber, G. L., The Geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity. Springer- Verlag, New York, 1992.
  • [8] Ören, I˙., Invariants of points for the orthogonal group O(3, 1). Doctoral thesis, Karadeniz Technical University, 2008.
  • [9] Ören, I˙., Complete system of invariants of subspaces of Lorentzian space. Iran. J. Sci. Technol. Trans. A Sci. (2016),1-22. (in press).
  • [10] Ören, I˙., The equivalence problem for vectors in the two-dimensional Minkowski spacetime and its application to Bézier curves. J. Math. Comput. Sci. 6 (2016), no. 1, 1-21.
  • [11] Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ.Math..Debrecen 57(2000),no. 1-2, 55-69.
  • [12] Study,E., The first main theorem for orthogonal vector invariants. Ber.Sachs. Akad. 136(1897).
  • [13] Sturmfels, B.,Algorithms in invariant theory. Springer-Verlag, Wien, 2008.
  • [14] Weyl, H., The classical groups:Their invariants and representations. Princeton University Press, Princeton, NJ, 1997.

On Invariants of m-Vector in Lorentzian Geometry

Year 2016, , 38 - 44, 30.04.2016
https://doi.org/10.36890/iejg.591885

Abstract


References

  • [1] Duggal, Krishan L. and Bejancu, A., Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Academic Publishers, Dordrecht, 1996.
  • [2] Greub, W., Linear Algebra. Springer-Verlag, 1967.
  • [3] Hilbert, D., Theory of algebraic invariants. Cambridge Univ.Press, New York, 1993.
  • 4] Höfer,R., m-point invariants of real geometries. Beitrage Algebra Geom. 40(1999), 261-266.
  • [5] Khadjiev, D. and Göksal, Y.,Applications of hyperbolic numbers to the invariant theory in two-dimensional pseudo-Euclidean space. Adv.Appl. Clifford Algebras, Online First Article (2015),1-24.
  • [6] Misiak, A. and Stasiak, E., Equivariant maps between certain G-spaces with G=O(n-1,1).Mathematica Bohemica 3(2001), 555-560.
  • [7] Naber, G. L., The Geometry of Minkowski spacetime: an introduction to the mathematics of the special theory of relativity. Springer- Verlag, New York, 1992.
  • [8] Ören, I˙., Invariants of points for the orthogonal group O(3, 1). Doctoral thesis, Karadeniz Technical University, 2008.
  • [9] Ören, I˙., Complete system of invariants of subspaces of Lorentzian space. Iran. J. Sci. Technol. Trans. A Sci. (2016),1-22. (in press).
  • [10] Ören, I˙., The equivalence problem for vectors in the two-dimensional Minkowski spacetime and its application to Bézier curves. J. Math. Comput. Sci. 6 (2016), no. 1, 1-21.
  • [11] Stasiak, E., Scalar concomitants of a system of vectors in pseudo-Euclidean geometry of index 1. Publ.Math..Debrecen 57(2000),no. 1-2, 55-69.
  • [12] Study,E., The first main theorem for orthogonal vector invariants. Ber.Sachs. Akad. 136(1897).
  • [13] Sturmfels, B.,Algorithms in invariant theory. Springer-Verlag, Wien, 2008.
  • [14] Weyl, H., The classical groups:Their invariants and representations. Princeton University Press, Princeton, NJ, 1997.
There are 14 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İdris Ören

Publication Date April 30, 2016
Published in Issue Year 2016

Cite

APA Ören, İ. (2016). On Invariants of m-Vector in Lorentzian Geometry. International Electronic Journal of Geometry, 9(1), 38-44. https://doi.org/10.36890/iejg.591885
AMA Ören İ. On Invariants of m-Vector in Lorentzian Geometry. Int. Electron. J. Geom. April 2016;9(1):38-44. doi:10.36890/iejg.591885
Chicago Ören, İdris. “On Invariants of M-Vector in Lorentzian Geometry”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 38-44. https://doi.org/10.36890/iejg.591885.
EndNote Ören İ (April 1, 2016) On Invariants of m-Vector in Lorentzian Geometry. International Electronic Journal of Geometry 9 1 38–44.
IEEE İ. Ören, “On Invariants of m-Vector in Lorentzian Geometry”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 38–44, 2016, doi: 10.36890/iejg.591885.
ISNAD Ören, İdris. “On Invariants of M-Vector in Lorentzian Geometry”. International Electronic Journal of Geometry 9/1 (April 2016), 38-44. https://doi.org/10.36890/iejg.591885.
JAMA Ören İ. On Invariants of m-Vector in Lorentzian Geometry. Int. Electron. J. Geom. 2016;9:38–44.
MLA Ören, İdris. “On Invariants of M-Vector in Lorentzian Geometry”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 38-44, doi:10.36890/iejg.591885.
Vancouver Ören İ. On Invariants of m-Vector in Lorentzian Geometry. Int. Electron. J. Geom. 2016;9(1):38-44.

Cited By


Invariants of a mapping of a set to the two-dimensional Euclidean space
Communications Faculty Of Science University of Ankara Series A1Mathematics and Statistics
https://doi.org/10.31801/cfsuasmas.1003511