Research Article
BibTex RIS Cite
Year 2021, , 59 - 65, 15.04.2021
https://doi.org/10.36890/iejg.754478

Abstract

References

  • [1] Belkhirat, A., Papadopoulos, A., Troyanov, M.: Thurston’s weak metric on the Teichmüller space of the torus. Transactions of the American Mathematical Society, 357(8), 3311-3324 (2005).
  • [2] Busemann, H.: Local metric geometry, Trans. Amer. Math. Soc. 56 200-274 (1944).
  • [3] Greenfield, M., Ji, L.: Metrics and compactifications of Teichmüller spaces of flat tori. Preprint arXiv:1903.10655. (2019).
  • [4] Greenfield, M.: A new modular characterization of the hyperbolic plane. Preprint arXiv:1707.00818. (2017).
  • [5] Sağlam, İ.: Complete flat cone metrics on punctured surfaces. Turkish Journal of Mathematics; 43, 813-832 (2019).
  • [6] Thurston, W.P.: Minimal Stretch maps between hyperbolic surfaces. Preprint arxiv:9801039. (1985).
  • [7] Troyanov, M.: Les surfaces euclidienne a singularites coniques, L’Enseign. Math. 32 79–94 (1986).
  • [8] Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Handbook of Teichmüller Theory, Vol. 1 (European Mathematical Society). 507–540 (2007).

On the Moduli Space of Flat Tori Having Unit Area

Year 2021, , 59 - 65, 15.04.2021
https://doi.org/10.36890/iejg.754478

Abstract

Inspiring from Thurston's asymmetric metric on Teichmüller spaces, we define and study a natural (weak) metric on the Teichmüller space of the torus. We prove that this weak metric is indeed a metric: it separates points and it is symmetric. We relate this metric with the hyperbolic metric on the upper half-plane. We define another metric which measures how much length of a closed geodesic changes when we deform a flat structure on the torus. We show that these two metrics coincide.

References

  • [1] Belkhirat, A., Papadopoulos, A., Troyanov, M.: Thurston’s weak metric on the Teichmüller space of the torus. Transactions of the American Mathematical Society, 357(8), 3311-3324 (2005).
  • [2] Busemann, H.: Local metric geometry, Trans. Amer. Math. Soc. 56 200-274 (1944).
  • [3] Greenfield, M., Ji, L.: Metrics and compactifications of Teichmüller spaces of flat tori. Preprint arXiv:1903.10655. (2019).
  • [4] Greenfield, M.: A new modular characterization of the hyperbolic plane. Preprint arXiv:1707.00818. (2017).
  • [5] Sağlam, İ.: Complete flat cone metrics on punctured surfaces. Turkish Journal of Mathematics; 43, 813-832 (2019).
  • [6] Thurston, W.P.: Minimal Stretch maps between hyperbolic surfaces. Preprint arxiv:9801039. (1985).
  • [7] Troyanov, M.: Les surfaces euclidienne a singularites coniques, L’Enseign. Math. 32 79–94 (1986).
  • [8] Troyanov, M.: On the moduli space of singular Euclidean surfaces. In: Handbook of Teichmüller Theory, Vol. 1 (European Mathematical Society). 507–540 (2007).
There are 8 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

İsmail Sağlam 0000-0002-1283-6396

Publication Date April 15, 2021
Acceptance Date October 15, 2020
Published in Issue Year 2021

Cite

APA Sağlam, İ. (2021). On the Moduli Space of Flat Tori Having Unit Area. International Electronic Journal of Geometry, 14(1), 59-65. https://doi.org/10.36890/iejg.754478
AMA Sağlam İ. On the Moduli Space of Flat Tori Having Unit Area. Int. Electron. J. Geom. April 2021;14(1):59-65. doi:10.36890/iejg.754478
Chicago Sağlam, İsmail. “On the Moduli Space of Flat Tori Having Unit Area”. International Electronic Journal of Geometry 14, no. 1 (April 2021): 59-65. https://doi.org/10.36890/iejg.754478.
EndNote Sağlam İ (April 1, 2021) On the Moduli Space of Flat Tori Having Unit Area. International Electronic Journal of Geometry 14 1 59–65.
IEEE İ. Sağlam, “On the Moduli Space of Flat Tori Having Unit Area”, Int. Electron. J. Geom., vol. 14, no. 1, pp. 59–65, 2021, doi: 10.36890/iejg.754478.
ISNAD Sağlam, İsmail. “On the Moduli Space of Flat Tori Having Unit Area”. International Electronic Journal of Geometry 14/1 (April 2021), 59-65. https://doi.org/10.36890/iejg.754478.
JAMA Sağlam İ. On the Moduli Space of Flat Tori Having Unit Area. Int. Electron. J. Geom. 2021;14:59–65.
MLA Sağlam, İsmail. “On the Moduli Space of Flat Tori Having Unit Area”. International Electronic Journal of Geometry, vol. 14, no. 1, 2021, pp. 59-65, doi:10.36890/iejg.754478.
Vancouver Sağlam İ. On the Moduli Space of Flat Tori Having Unit Area. Int. Electron. J. Geom. 2021;14(1):59-65.