[1] (Bayrak) Gürses, N., Yüce, S., One-Parameter Planar Motions in Generalized Complex Number Plane Cj . Adv. Appl. Clifford Algebr. 4
(2015), no.25, 889-903.
[2] (Bayrak) Gürses, N., Yüce, S., One-Parameter Planar Motions in Affine Cayley-Klein Planes. European Journal of Pure and Applied
Mathematics 7 (2014), no.3, 335-342.
[4] A. P. CLIFFORD, The Math Book: 250 Milestones in the History of Mathematics. Sterling, ISBN 978-1-4027-5796-9, 2009.
[5] Erişir, T., Güngör, M.A., Tosun, M., A New Generalization of the Steiner Formula and the Holditch Theorem. Adv. Appl. Clifford Algebr. 26
(2016), no.1, 97-113.
[6] Erişir, T., Güngör, M.A., Tosun, M., The Holditch-Type Theorem for the Polar Moment of Inertia of the Orbit Curve in the Generalized
Complex Plane. Adv. Appl. Clifford Algebr. 26 (2016), no.4, 1179-1193.
[7] Hacısalihoğlu, H. Hilmi., On the Geometry of Motion of Lorentzian Plane. Proc. of Assiut First International Conference of Mathematics
and Statistics, Part I, University of Assiut, Assiut, Egypt, (1990), 87-107.
[1] (Bayrak) Gürses, N., Yüce, S., One-Parameter Planar Motions in Generalized Complex Number Plane Cj . Adv. Appl. Clifford Algebr. 4
(2015), no.25, 889-903.
[2] (Bayrak) Gürses, N., Yüce, S., One-Parameter Planar Motions in Affine Cayley-Klein Planes. European Journal of Pure and Applied
Mathematics 7 (2014), no.3, 335-342.
[4] A. P. CLIFFORD, The Math Book: 250 Milestones in the History of Mathematics. Sterling, ISBN 978-1-4027-5796-9, 2009.
[5] Erişir, T., Güngör, M.A., Tosun, M., A New Generalization of the Steiner Formula and the Holditch Theorem. Adv. Appl. Clifford Algebr. 26
(2016), no.1, 97-113.
[6] Erişir, T., Güngör, M.A., Tosun, M., The Holditch-Type Theorem for the Polar Moment of Inertia of the Orbit Curve in the Generalized
Complex Plane. Adv. Appl. Clifford Algebr. 26 (2016), no.4, 1179-1193.
[7] Hacısalihoğlu, H. Hilmi., On the Geometry of Motion of Lorentzian Plane. Proc. of Assiut First International Conference of Mathematics
and Statistics, Part I, University of Assiut, Assiut, Egypt, (1990), 87-107.
Erişir, T., & Güngör, M. A. (2018). The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p. International Electronic Journal of Geometry, 11(2), 111-119. https://doi.org/10.36890/iejg.545140
AMA
Erişir T, Güngör MA. The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p. Int. Electron. J. Geom. November 2018;11(2):111-119. doi:10.36890/iejg.545140
Chicago
Erişir, Tülay, and Mehmet Ali Güngör. “The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p”. International Electronic Journal of Geometry 11, no. 2 (November 2018): 111-19. https://doi.org/10.36890/iejg.545140.
EndNote
Erişir T, Güngör MA (November 1, 2018) The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p. International Electronic Journal of Geometry 11 2 111–119.
IEEE
T. Erişir and M. A. Güngör, “The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p”, Int. Electron. J. Geom., vol. 11, no. 2, pp. 111–119, 2018, doi: 10.36890/iejg.545140.
ISNAD
Erişir, Tülay - Güngör, Mehmet Ali. “The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p”. International Electronic Journal of Geometry 11/2 (November 2018), 111-119. https://doi.org/10.36890/iejg.545140.
JAMA
Erişir T, Güngör MA. The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p. Int. Electron. J. Geom. 2018;11:111–119.
MLA
Erişir, Tülay and Mehmet Ali Güngör. “The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p”. International Electronic Journal of Geometry, vol. 11, no. 2, 2018, pp. 111-9, doi:10.36890/iejg.545140.
Vancouver
Erişir T, Güngör MA. The Cauchy-Length Formula and Holditch Theorem in the Generalized Complex Plane C_p. Int. Electron. J. Geom. 2018;11(2):111-9.