Research Article
BibTex RIS Cite
Year 2016, Volume: 9 Issue: 1, 57 - 61, 30.04.2016
https://doi.org/10.36890/iejg.591888

Abstract

References

  • [1] Abraham, R., Marsden, J.E. and Ratiu, T., Manifolds, Tensor Analysis and Applications, Second Press, Springer Verlag, New York, 1988.
  • [2] Barros, A. and Bessa, G.P., Estimates of the first eigenvalue of minimal hypersurfaces of Sn+1, arXiv:math.DG/0410493v1, (2007).
  • [3] Bektas¸, M., The Reilly’s integral formula on Lorentz manifolds with nondegenerate timelike boundary. Science and Engineering Journal of Firat University 10(2) (1998), 89-97.
  • [4] Choi, H.I. and Wang, A.N., A first eigenvalue estimate for minimal hypersurfaces. J. Differential Geom. 18(1983), 559-562.
  • [5] Ho, P.T., A first eigenvalue estimate for embedded hypersurfaces. Differential Geometry and its Applications (2007), doi:10.1016/j.difgeo.2007.11.019.
  • [6] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.

Eigenvalue Rigidity in Nonnegative Ricci Curvature

Year 2016, Volume: 9 Issue: 1, 57 - 61, 30.04.2016
https://doi.org/10.36890/iejg.591888

Abstract


References

  • [1] Abraham, R., Marsden, J.E. and Ratiu, T., Manifolds, Tensor Analysis and Applications, Second Press, Springer Verlag, New York, 1988.
  • [2] Barros, A. and Bessa, G.P., Estimates of the first eigenvalue of minimal hypersurfaces of Sn+1, arXiv:math.DG/0410493v1, (2007).
  • [3] Bektas¸, M., The Reilly’s integral formula on Lorentz manifolds with nondegenerate timelike boundary. Science and Engineering Journal of Firat University 10(2) (1998), 89-97.
  • [4] Choi, H.I. and Wang, A.N., A first eigenvalue estimate for minimal hypersurfaces. J. Differential Geom. 18(1983), 559-562.
  • [5] Ho, P.T., A first eigenvalue estimate for embedded hypersurfaces. Differential Geometry and its Applications (2007), doi:10.1016/j.difgeo.2007.11.019.
  • [6] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
There are 6 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Mihriban Külahcı

Mehmet Bektaş

Publication Date April 30, 2016
Published in Issue Year 2016 Volume: 9 Issue: 1

Cite

APA Külahcı, M., & Bektaş, M. (2016). Eigenvalue Rigidity in Nonnegative Ricci Curvature. International Electronic Journal of Geometry, 9(1), 57-61. https://doi.org/10.36890/iejg.591888
AMA Külahcı M, Bektaş M. Eigenvalue Rigidity in Nonnegative Ricci Curvature. Int. Electron. J. Geom. April 2016;9(1):57-61. doi:10.36890/iejg.591888
Chicago Külahcı, Mihriban, and Mehmet Bektaş. “Eigenvalue Rigidity in Nonnegative Ricci Curvature”. International Electronic Journal of Geometry 9, no. 1 (April 2016): 57-61. https://doi.org/10.36890/iejg.591888.
EndNote Külahcı M, Bektaş M (April 1, 2016) Eigenvalue Rigidity in Nonnegative Ricci Curvature. International Electronic Journal of Geometry 9 1 57–61.
IEEE M. Külahcı and M. Bektaş, “Eigenvalue Rigidity in Nonnegative Ricci Curvature”, Int. Electron. J. Geom., vol. 9, no. 1, pp. 57–61, 2016, doi: 10.36890/iejg.591888.
ISNAD Külahcı, Mihriban - Bektaş, Mehmet. “Eigenvalue Rigidity in Nonnegative Ricci Curvature”. International Electronic Journal of Geometry 9/1 (April 2016), 57-61. https://doi.org/10.36890/iejg.591888.
JAMA Külahcı M, Bektaş M. Eigenvalue Rigidity in Nonnegative Ricci Curvature. Int. Electron. J. Geom. 2016;9:57–61.
MLA Külahcı, Mihriban and Mehmet Bektaş. “Eigenvalue Rigidity in Nonnegative Ricci Curvature”. International Electronic Journal of Geometry, vol. 9, no. 1, 2016, pp. 57-61, doi:10.36890/iejg.591888.
Vancouver Külahcı M, Bektaş M. Eigenvalue Rigidity in Nonnegative Ricci Curvature. Int. Electron. J. Geom. 2016;9(1):57-61.