[1] Abbassi M.T.K, Note on the classification theorems of g-natural metrics on the tangent
bundle of a Riemannian manifold (M, g), Comment. Math.Univ. Carolin. 45 (4) (2004) 591596.
[2] Abbassi M.T.K., Sarih M. On natural metrics on tangent bundles of Riemannian manifolds.
Arch. Math. (Brno), 41 (2005), no. 1, 71-92.
[3] Abbassi M.T.K., Sarih M. On some hereditary properties of Riemannian g-natural metrics on
tangent bundles of Riemannian manifolds. Differential Geom. Appl., 22(2005), no. 1, 19-47.
[4] A˘gca F., Salimov A.A., Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math.
Stat., (2012) (to appear).
[5] Cheeger J., Gromoll D., On the structure of complete manifolds of nonnegative curvature,
Ann. of Math., 96, 413-443, (1972).
[6] Gudmundsson S., Kappos E., On the geometry of the tangent bundle with the Cheeger- Gromoll
metric, Tokyo J. Math. 25, no.1, 75-83, (2002).
[7] Gudmundsson S., Kappos E., On the geometry of the tangent bundles, Expo. Math.20, no.1, 1-41,
(2002).
[8] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I, Interscience Publish-
ers, New York-London, (1963).
[9] Munteanu M. I., Cheeger Gromoll type metrics on the tangent bundle. Sci. Ann. Univ. Agric.
Sci. Vet. Med., 49(2006), no.2, 257-268.
[10] Munteanu M. I., Some aspects on the geometry of the tangent bundles and tangent sphere
bundles of a Riemannian manifold. Mediterr. J. Math., 5 (2008), 43-59.
[11] Musso F., Tricerri F., Riemannian metric on tangent bundles, Ann. Math. Pura. Appl.,
150(4), 1-19, (1988).
[12] Salimov A.A., Agca F., Some properties os Sasakian metrics in cotangent bundles, Mediterr.
J. math., 8 (2011), 243-255.
[13] Salimov A.A., Agca F., On para- Nordenian structures, Ann. Pol. Math., 99(2010) no.2, 193-200.
[14] Salimov A.A., Akbulut K., A note on a paraholomorphic Cheeger-Gromoll metic. Proc. In- dian
Acad. Sci. (Math. Sci) 119 (2009), no.2,187-195.
[15] Salimov A.A., Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turk. J. Math., 32
(2008), 1-8.
[16] Sekizawa M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math., 14,
407-417, (1991).
[17] Sukhova O.V., Curvatures of the tangent bundle with a special almost product metric, Math.
Notes., 89(2011) no.4, 568-571.
[18] Tamm I.E., Collection of scientific works ( Sobranie nauchnyh trudov (Russian)), II, Nauka,
Moscow, (1975).
[19] Yano K., Ishihara S., Tangent and cotangent bundles, Marcel Dekker Inc., N.Y., (1973).
Year 2013,
Volume: 6 Issue: 1, 129 - 146, 30.04.2013
[1] Abbassi M.T.K, Note on the classification theorems of g-natural metrics on the tangent
bundle of a Riemannian manifold (M, g), Comment. Math.Univ. Carolin. 45 (4) (2004) 591596.
[2] Abbassi M.T.K., Sarih M. On natural metrics on tangent bundles of Riemannian manifolds.
Arch. Math. (Brno), 41 (2005), no. 1, 71-92.
[3] Abbassi M.T.K., Sarih M. On some hereditary properties of Riemannian g-natural metrics on
tangent bundles of Riemannian manifolds. Differential Geom. Appl., 22(2005), no. 1, 19-47.
[4] A˘gca F., Salimov A.A., Some notes concerning Cheeger-Gromoll metrics, Hacet. J. Math.
Stat., (2012) (to appear).
[5] Cheeger J., Gromoll D., On the structure of complete manifolds of nonnegative curvature,
Ann. of Math., 96, 413-443, (1972).
[6] Gudmundsson S., Kappos E., On the geometry of the tangent bundle with the Cheeger- Gromoll
metric, Tokyo J. Math. 25, no.1, 75-83, (2002).
[7] Gudmundsson S., Kappos E., On the geometry of the tangent bundles, Expo. Math.20, no.1, 1-41,
(2002).
[8] Kobayashi S., Nomizu K., Foundations of differential geometry, Vol. I, Interscience Publish-
ers, New York-London, (1963).
[9] Munteanu M. I., Cheeger Gromoll type metrics on the tangent bundle. Sci. Ann. Univ. Agric.
Sci. Vet. Med., 49(2006), no.2, 257-268.
[10] Munteanu M. I., Some aspects on the geometry of the tangent bundles and tangent sphere
bundles of a Riemannian manifold. Mediterr. J. Math., 5 (2008), 43-59.
[11] Musso F., Tricerri F., Riemannian metric on tangent bundles, Ann. Math. Pura. Appl.,
150(4), 1-19, (1988).
[12] Salimov A.A., Agca F., Some properties os Sasakian metrics in cotangent bundles, Mediterr.
J. math., 8 (2011), 243-255.
[13] Salimov A.A., Agca F., On para- Nordenian structures, Ann. Pol. Math., 99(2010) no.2, 193-200.
[14] Salimov A.A., Akbulut K., A note on a paraholomorphic Cheeger-Gromoll metic. Proc. In- dian
Acad. Sci. (Math. Sci) 119 (2009), no.2,187-195.
[15] Salimov A.A., Kazimova S., Geodesics of the Cheeger-Gromoll metric, Turk. J. Math., 32
(2008), 1-8.
[16] Sekizawa M., Curvatures of tangent bundles with Cheeger-Gromoll metric, Tokyo J. Math., 14,
407-417, (1991).
[17] Sukhova O.V., Curvatures of the tangent bundle with a special almost product metric, Math.
Notes., 89(2011) no.4, 568-571.
[18] Tamm I.E., Collection of scientific works ( Sobranie nauchnyh trudov (Russian)), II, Nauka,
Moscow, (1975).
[19] Yano K., Ishihara S., Tangent and cotangent bundles, Marcel Dekker Inc., N.Y., (1973).