On Homogeneous Randers Metrics
Year 2021,
Volume: 14 Issue: 1, 217 - 225, 15.04.2021
Akbar Sadighi
Megerdich Toomanian
,
Behzad Najafi
References
- [1] H. Akbar-Zadeh, Generalized Einstein manifolds, Jour. Geom. Phys. 17(1995), 342-
380.
- [2] D. Bao, On two curvature-driven problems in Finsler geometry, Adv. Study Pure
Math, 48(2007), Finsler Geometry, Sapporo 2005 - In Memery of Makoto Mat-
sumoto, 19-71.
- [3] D. Bao and C. Robles, Ricci and Flag curvatures in Finsler geometry, A Sampler of
Riemann-Finlser Geometry, MSRIP. 50(2004), 198-256.
- [4] L. Berwald, Über Parallelübertragung in Raumen mit allgemeiner Massbestimmung,Jber. Deutsch. Math.-Verein, 34(1925), 213-220.
- [5] S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific. J. Math,
207(2002), 149-155.
- [6] S. Deng and Z. Hou, Homogeneous Einstein-Randers spaces of negative Ricci curva-
ture, C. R. Math. Acad. Sci. Paris. 347(2009), 1169-1172.
- [7] S. Deng and Z. Hu, Curvatures of homogeneous Randers spaces, Adv. Math.
240(2013), 194-226.
- [8] S. Deng and Z. Hu, On flag curvature of homogeneous Randers spaces, Canad. J.
Math. 65(2013), 66-81.
- [9] E. Esrafilian and H.R. Salimi Moghaddam, Flag curvature of invariant Randers
metrics on homogeneous manifolds, J. Phys. A: Math. Gen. 39(2006), 3319-3324.
- [10] Z. Hu and S. Deng, Ricci-quadratic homogeneous Randers spaces, Nonlinear Analysis.
92(2013), 130-137.
- [11] B. Li and Z. Shen, Ricci curvature tensor and non-Riemannian quantities, Canadian
Mathematical Bulletin, 58(2015), 530-537.
- [12] M. Matsumoto, Foundations of Finsler Geometry and special Finsler Spaces, Kai-
seisha Press, Japan 1986.
- [13] M. Matsumoto, An improvment proof of Numata and Shibata’s theorem on Finsler
spaces of scalar curvature, Publ. Math. Debrecen, 64(2004), 489-500.
- [14] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys.
Rev. 59(1941), 195-199.
- [15] C. Robles, Einstein metrics of Randers type, Doctoral Dissertation, University of
British Columbia, 2003.
- [16] Z. Shen, Finsler metrics with K = 0 and S = 0, Canadian J. Math. 55(2003),
112-132.
- [17] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Pub-
lishers, 2001.
- [18] C. Shibata, On Finsler spaces with Kropina metrics, Report. Math., 13(1978), 117-
128.
- [19] H. Shimada, On the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc.
14(1977), 41-63.
- [20] A. Tayebi and E. Peyghan, On Ricci tensors of Randers metrics, J. Geom. Phys.
60(2010), 1665-1670.
- [21] M. Xu and S. Deng, Homogeneous (α,β)-spaces with positive flag curvature and
vanishing S-curvature, Nonlinear Analysis. 127(2015), 45-54.
On Homogeneous Randers Metrics
Year 2021,
Volume: 14 Issue: 1, 217 - 225, 15.04.2021
Akbar Sadighi
Megerdich Toomanian
,
Behzad Najafi
Abstract
In this paper, we study the curvature features of the class of homogeneous Randers metrics. For these metrics, we first find a reduction criterion to be a Berwald metric based on a mild restriction on their Ricci tensors. Then, we prove that every homogeneous Randers metric with relatively isotropic (or weak) Landsberg curvature must be Riemannian. This provides an extension of well-known Deng-Hu theorem that proves the same result for a homogeneous Berwald-Randers metric of non-zero flag curvature.
References
- [1] H. Akbar-Zadeh, Generalized Einstein manifolds, Jour. Geom. Phys. 17(1995), 342-
380.
- [2] D. Bao, On two curvature-driven problems in Finsler geometry, Adv. Study Pure
Math, 48(2007), Finsler Geometry, Sapporo 2005 - In Memery of Makoto Mat-
sumoto, 19-71.
- [3] D. Bao and C. Robles, Ricci and Flag curvatures in Finsler geometry, A Sampler of
Riemann-Finlser Geometry, MSRIP. 50(2004), 198-256.
- [4] L. Berwald, Über Parallelübertragung in Raumen mit allgemeiner Massbestimmung,Jber. Deutsch. Math.-Verein, 34(1925), 213-220.
- [5] S. Deng and Z. Hou, The group of isometries of a Finsler space, Pacific. J. Math,
207(2002), 149-155.
- [6] S. Deng and Z. Hou, Homogeneous Einstein-Randers spaces of negative Ricci curva-
ture, C. R. Math. Acad. Sci. Paris. 347(2009), 1169-1172.
- [7] S. Deng and Z. Hu, Curvatures of homogeneous Randers spaces, Adv. Math.
240(2013), 194-226.
- [8] S. Deng and Z. Hu, On flag curvature of homogeneous Randers spaces, Canad. J.
Math. 65(2013), 66-81.
- [9] E. Esrafilian and H.R. Salimi Moghaddam, Flag curvature of invariant Randers
metrics on homogeneous manifolds, J. Phys. A: Math. Gen. 39(2006), 3319-3324.
- [10] Z. Hu and S. Deng, Ricci-quadratic homogeneous Randers spaces, Nonlinear Analysis.
92(2013), 130-137.
- [11] B. Li and Z. Shen, Ricci curvature tensor and non-Riemannian quantities, Canadian
Mathematical Bulletin, 58(2015), 530-537.
- [12] M. Matsumoto, Foundations of Finsler Geometry and special Finsler Spaces, Kai-
seisha Press, Japan 1986.
- [13] M. Matsumoto, An improvment proof of Numata and Shibata’s theorem on Finsler
spaces of scalar curvature, Publ. Math. Debrecen, 64(2004), 489-500.
- [14] G. Randers, On an asymmetric metric in the four-space of general relativity, Phys.
Rev. 59(1941), 195-199.
- [15] C. Robles, Einstein metrics of Randers type, Doctoral Dissertation, University of
British Columbia, 2003.
- [16] Z. Shen, Finsler metrics with K = 0 and S = 0, Canadian J. Math. 55(2003),
112-132.
- [17] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Pub-
lishers, 2001.
- [18] C. Shibata, On Finsler spaces with Kropina metrics, Report. Math., 13(1978), 117-
128.
- [19] H. Shimada, On the Ricci tensors of particular Finsler spaces, J. Korean Math. Soc.
14(1977), 41-63.
- [20] A. Tayebi and E. Peyghan, On Ricci tensors of Randers metrics, J. Geom. Phys.
60(2010), 1665-1670.
- [21] M. Xu and S. Deng, Homogeneous (α,β)-spaces with positive flag curvature and
vanishing S-curvature, Nonlinear Analysis. 127(2015), 45-54.