Research Article
BibTex RIS Cite

The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function

Year 2022, Volume: 15 Issue: 1, 20 - 29, 30.04.2022
https://doi.org/10.36890/iejg.1022605

Abstract

Considering a projectively invariant metric $\tau$ defined by the kernel function on a strongly convex bounded domain $\Omega\subset\mathbb{R}^n$,
we study the asymptotic expansion of the scalar curvature with respect to the distance function, and use the Fubini-Pick invariant to describe the second term in the expansion. This asymptotic expansion implies that if $n\geq 3$ and $(\Omega,\tau )$ has constant scalar curvature, then the convex domain is projectively equivalent to a ball.

Supporting Institution

NSFC

Project Number

12061036

References

  • [1] A.M.Li, U.Simon, G.Zhao, Global affine differetial geometry of hypersurfaces, (Walter de Gruyter, Berlin, 1993)
  • [2] T.Sasaki, On the Green function of a complete Riemannian or K$\ddot{a}$hler manifold with asymptotically negative constant curvature and applications, Adv.Stud.Pure Math. 3(1984): 387-421
  • [3] T.Sasaki, A note on characteristic functions and projectively invariant metrics on a bounded convex domain, Tokyo J.Math. 8(1985): 49-79
  • [4] T.Sasaki, T.Yagi, Sectional curvature of projective invariant metrics on a strictly convex domain, Tokyo J.Math. 19(1996): 419-433
  • [5] Y.Wu, The scalar curvature of a projectively invariant metric on a convex domain, J.Gemo. 109(2018)
  • [6] Y.Wu, The p-th characteristic function and associated metric on a convex domain, Adv.Math(China). 47, 1(2018): 95-108
Year 2022, Volume: 15 Issue: 1, 20 - 29, 30.04.2022
https://doi.org/10.36890/iejg.1022605

Abstract

Project Number

12061036

References

  • [1] A.M.Li, U.Simon, G.Zhao, Global affine differetial geometry of hypersurfaces, (Walter de Gruyter, Berlin, 1993)
  • [2] T.Sasaki, On the Green function of a complete Riemannian or K$\ddot{a}$hler manifold with asymptotically negative constant curvature and applications, Adv.Stud.Pure Math. 3(1984): 387-421
  • [3] T.Sasaki, A note on characteristic functions and projectively invariant metrics on a bounded convex domain, Tokyo J.Math. 8(1985): 49-79
  • [4] T.Sasaki, T.Yagi, Sectional curvature of projective invariant metrics on a strictly convex domain, Tokyo J.Math. 19(1996): 419-433
  • [5] Y.Wu, The scalar curvature of a projectively invariant metric on a convex domain, J.Gemo. 109(2018)
  • [6] Y.Wu, The p-th characteristic function and associated metric on a convex domain, Adv.Math(China). 47, 1(2018): 95-108
There are 6 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Yadong Wu 0000-0001-9762-0561

Hua Zhang This is me 0000-0003-0698-2132

Project Number 12061036
Early Pub Date April 30, 2022
Publication Date April 30, 2022
Acceptance Date March 7, 2022
Published in Issue Year 2022 Volume: 15 Issue: 1

Cite

APA Wu, Y., & Zhang, H. (2022). The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function. International Electronic Journal of Geometry, 15(1), 20-29. https://doi.org/10.36890/iejg.1022605
AMA Wu Y, Zhang H. The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function. Int. Electron. J. Geom. April 2022;15(1):20-29. doi:10.36890/iejg.1022605
Chicago Wu, Yadong, and Hua Zhang. “The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function”. International Electronic Journal of Geometry 15, no. 1 (April 2022): 20-29. https://doi.org/10.36890/iejg.1022605.
EndNote Wu Y, Zhang H (April 1, 2022) The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function. International Electronic Journal of Geometry 15 1 20–29.
IEEE Y. Wu and H. Zhang, “The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function”, Int. Electron. J. Geom., vol. 15, no. 1, pp. 20–29, 2022, doi: 10.36890/iejg.1022605.
ISNAD Wu, Yadong - Zhang, Hua. “The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function”. International Electronic Journal of Geometry 15/1 (April 2022), 20-29. https://doi.org/10.36890/iejg.1022605.
JAMA Wu Y, Zhang H. The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function. Int. Electron. J. Geom. 2022;15:20–29.
MLA Wu, Yadong and Hua Zhang. “The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function”. International Electronic Journal of Geometry, vol. 15, no. 1, 2022, pp. 20-29, doi:10.36890/iejg.1022605.
Vancouver Wu Y, Zhang H. The Scalar Curvature of a Projectively Invariant Metric Defined by the Kernel Function. Int. Electron. J. Geom. 2022;15(1):20-9.