Research Article
BibTex RIS Cite

Family of Surfaces with a Common Special Involute and Evolute Curves

Year 2022, Volume: 15 Issue: 1, 160 - 174, 30.04.2022
https://doi.org/10.36890/iejg.932757

Abstract

In this paper, we define the necessary and sufficient conditions for a parametric surface on which both the involute and evolute of any given curve lie to be geodesic, asymptotic and curvature line. Then, the first and second fundamental forms of these surfaces are calculated. By using the Gaussian and mean curvatures, the developability and minimality assumptions are drawn, as well.
Moreover we extended the idea to the ruled surfaces. Finally, we provide a set of examples to illustrate the corresponding surfaces.

Project Number

yok

References

  • [1] Atalay, G. Ş., Kasap, E.: Surfaces family with common null asymptotic. Applied Mathematics and Computation, 260, 135-139 (2015).
  • [2] Atalay, G. Ş. , Kasap, E.: Surfaces family with common Smarandache asymptotic curve. Boletim da Sociedade Paranaense de Matemática, 34(1), 9-20 (2016).
  • [3] Atalay, G. Ş., Kasap, E.: Surfaces family with common Smarandache geodesic curve. Journal of Science and Arts, 17(4), 651-664 (2017).
  • [4] Bayram, E., Güler, F., Kasap, E.: Parametric representation of a surface pencil with a common asymptotic curve. Computer-Aided Design, 44(7), 637-643 (2012).
  • [5] Bayram, E., Bilici, M.: Surface family with a common involute asymptotic curve. 7. International Journal of Geometric Methods in Modern Physics, 13(5), 8 (2016).
  • [6] Millman, R. S., Parker, G. D.: Elements of differential geometry (pp. xiv+-265). Englewood Cliffs, NJ: Prentice-Hall.
  • [7] Çalışkan, M., Bilici, M.: Some characterizations for the pair of involute-evolute curves in Euclidean space E3. Bulletin of Pure and Applied Sciences, 21(2), 289-294 (2002).
  • [8] Do Carmo, M. P.: Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications (2016).
  • [9] Fuchs, D.: Evolutes and involutes of spatial curves. The American Mathematical Monthly, 120(3), 217-231 (2013).
  • [10] Li, C. Y., Wang, R. H., Zhu, C. G.: Parametric representation of a surface pencil with a common line of curvature. Computer-Aided Design, 43(9), 1110-1117 (2011).
  • [11] O’neill, B.: Elementary differential geometry. Elsevier. (2006).
  • [12] Paluszny, M.: Cubic polynomial patches through geodesics. Computer-Aided Design, 40(1), 56-61 (2008).
  • [13] Sabuncuoğlu, A.: Diferensiyel Geometri. Nobel Yayın Da˘ gıtım, (2010).
  • [14] Sánchez-Reyes, J. and Dorado, R.: Constrained design of polynomial surfaces from geodesic curves. Computer-Aided Design, 40(1), 49-55 (2008).
  • [15] Ravani, B., Ku, T. S.: Bertrand offsets of ruled and developable surfaces. Computer-Aided Design, 23(2), 145-152 (1991).
  • [16] Wang, G. J., Tang, K., Tai, C. L.: Parametric representation of a surface pencil with a common spatial geodesic. Computer-Aided Design, 36(5), 447-459 (2004).
  • [17] Zhao, H., Wang, G. A new approach for designing rational bézier surfaces from a given geodesic. Journal of information and computational Science, 4(2), 879-887 (2007).
  • [18] Zhao, H., Wang, G.: A new method for designing a developable surface utilizing the surface pencil through a given curve. Progress in Natural Science, 18(1), 105-110 (2008).
Year 2022, Volume: 15 Issue: 1, 160 - 174, 30.04.2022
https://doi.org/10.36890/iejg.932757

Abstract

Supporting Institution

yok

Project Number

yok

Thanks

Makale inceleme sürecinde emeği geçenlere ve hakemlik yapacak değerli hocalarıma şimdiden teşekkür ederim.

References

  • [1] Atalay, G. Ş., Kasap, E.: Surfaces family with common null asymptotic. Applied Mathematics and Computation, 260, 135-139 (2015).
  • [2] Atalay, G. Ş. , Kasap, E.: Surfaces family with common Smarandache asymptotic curve. Boletim da Sociedade Paranaense de Matemática, 34(1), 9-20 (2016).
  • [3] Atalay, G. Ş., Kasap, E.: Surfaces family with common Smarandache geodesic curve. Journal of Science and Arts, 17(4), 651-664 (2017).
  • [4] Bayram, E., Güler, F., Kasap, E.: Parametric representation of a surface pencil with a common asymptotic curve. Computer-Aided Design, 44(7), 637-643 (2012).
  • [5] Bayram, E., Bilici, M.: Surface family with a common involute asymptotic curve. 7. International Journal of Geometric Methods in Modern Physics, 13(5), 8 (2016).
  • [6] Millman, R. S., Parker, G. D.: Elements of differential geometry (pp. xiv+-265). Englewood Cliffs, NJ: Prentice-Hall.
  • [7] Çalışkan, M., Bilici, M.: Some characterizations for the pair of involute-evolute curves in Euclidean space E3. Bulletin of Pure and Applied Sciences, 21(2), 289-294 (2002).
  • [8] Do Carmo, M. P.: Differential geometry of curves and surfaces: revised and updated second edition. Courier Dover Publications (2016).
  • [9] Fuchs, D.: Evolutes and involutes of spatial curves. The American Mathematical Monthly, 120(3), 217-231 (2013).
  • [10] Li, C. Y., Wang, R. H., Zhu, C. G.: Parametric representation of a surface pencil with a common line of curvature. Computer-Aided Design, 43(9), 1110-1117 (2011).
  • [11] O’neill, B.: Elementary differential geometry. Elsevier. (2006).
  • [12] Paluszny, M.: Cubic polynomial patches through geodesics. Computer-Aided Design, 40(1), 56-61 (2008).
  • [13] Sabuncuoğlu, A.: Diferensiyel Geometri. Nobel Yayın Da˘ gıtım, (2010).
  • [14] Sánchez-Reyes, J. and Dorado, R.: Constrained design of polynomial surfaces from geodesic curves. Computer-Aided Design, 40(1), 49-55 (2008).
  • [15] Ravani, B., Ku, T. S.: Bertrand offsets of ruled and developable surfaces. Computer-Aided Design, 23(2), 145-152 (1991).
  • [16] Wang, G. J., Tang, K., Tai, C. L.: Parametric representation of a surface pencil with a common spatial geodesic. Computer-Aided Design, 36(5), 447-459 (2004).
  • [17] Zhao, H., Wang, G. A new approach for designing rational bézier surfaces from a given geodesic. Journal of information and computational Science, 4(2), 879-887 (2007).
  • [18] Zhao, H., Wang, G.: A new method for designing a developable surface utilizing the surface pencil through a given curve. Progress in Natural Science, 18(1), 105-110 (2008).
There are 18 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Süleyman Şenyurt 0000-0003-1097-5541

Kebire Hilal Ayvacı 0000-0002-5114-5475

Davut Canlı 0000-0003-0405-9969

Project Number yok
Early Pub Date April 30, 2022
Publication Date April 30, 2022
Acceptance Date November 6, 2021
Published in Issue Year 2022 Volume: 15 Issue: 1

Cite

APA Şenyurt, S., Ayvacı, K. H., & Canlı, D. (2022). Family of Surfaces with a Common Special Involute and Evolute Curves. International Electronic Journal of Geometry, 15(1), 160-174. https://doi.org/10.36890/iejg.932757
AMA Şenyurt S, Ayvacı KH, Canlı D. Family of Surfaces with a Common Special Involute and Evolute Curves. Int. Electron. J. Geom. April 2022;15(1):160-174. doi:10.36890/iejg.932757
Chicago Şenyurt, Süleyman, Kebire Hilal Ayvacı, and Davut Canlı. “Family of Surfaces With a Common Special Involute and Evolute Curves”. International Electronic Journal of Geometry 15, no. 1 (April 2022): 160-74. https://doi.org/10.36890/iejg.932757.
EndNote Şenyurt S, Ayvacı KH, Canlı D (April 1, 2022) Family of Surfaces with a Common Special Involute and Evolute Curves. International Electronic Journal of Geometry 15 1 160–174.
IEEE S. Şenyurt, K. H. Ayvacı, and D. Canlı, “Family of Surfaces with a Common Special Involute and Evolute Curves”, Int. Electron. J. Geom., vol. 15, no. 1, pp. 160–174, 2022, doi: 10.36890/iejg.932757.
ISNAD Şenyurt, Süleyman et al. “Family of Surfaces With a Common Special Involute and Evolute Curves”. International Electronic Journal of Geometry 15/1 (April 2022), 160-174. https://doi.org/10.36890/iejg.932757.
JAMA Şenyurt S, Ayvacı KH, Canlı D. Family of Surfaces with a Common Special Involute and Evolute Curves. Int. Electron. J. Geom. 2022;15:160–174.
MLA Şenyurt, Süleyman et al. “Family of Surfaces With a Common Special Involute and Evolute Curves”. International Electronic Journal of Geometry, vol. 15, no. 1, 2022, pp. 160-74, doi:10.36890/iejg.932757.
Vancouver Şenyurt S, Ayvacı KH, Canlı D. Family of Surfaces with a Common Special Involute and Evolute Curves. Int. Electron. J. Geom. 2022;15(1):160-74.

Cited By