Research Article
BibTex RIS Cite

On the Generalized of p-harmonic Maps

Year 2022, Volume: 15 Issue: 2, 183 - 191, 31.10.2022
https://doi.org/10.36890/iejg.1085856

Abstract

In this paper, we extend the definition of p-harmonic and p-biharmonic maps between Riemannian manifolds.
We present some new properties for the generalized stable p-harmonic maps.

References

  • [1] Baird, P., Wood, J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • [2] Baird, P., Gudmundsson, S.: p-Harmonic maps and minimal submanifolds. Math. Ann. 294, 611-624 (1992).
  • [3] Bojarski, B., Iwaniec, T.: p-Harmonic equation and quasiregular mappings. Banach Center Publ. 19 (1), 25-38 (1987).
  • [4] Cheung, L-F., Leung, P-F.: Some results on stable p-harmonic maps. Glasgow Math. J. 36, 77-80 (1994).
  • [5] Eells, J., Sampson, J. H.:Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).
  • [6] Fardoun, A.: On equivariant p-harmonic maps. Ann. Inst. Henri. Poincare. 15, 25-72 (1998).
  • [7] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (4), 389-402 (1986).
  • [8] Mohammed Cherif, A.: On the p-harmonic and p-biharmonic maps. J. Geom. 109 (41), (2018).
  • [9] Nagano, T., Sumi M.: Stability of p-harmonic maps. Tokyo J. Math. 15 (2), 475-482 (1992).
  • [10] Xin Y.: Geometry of harmonic maps. Fudan University (1996).
Year 2022, Volume: 15 Issue: 2, 183 - 191, 31.10.2022
https://doi.org/10.36890/iejg.1085856

Abstract

References

  • [1] Baird, P., Wood, J. C.: Harmonic morphisms between Riemannain manifolds. Clarendon Press, Oxford (2003).
  • [2] Baird, P., Gudmundsson, S.: p-Harmonic maps and minimal submanifolds. Math. Ann. 294, 611-624 (1992).
  • [3] Bojarski, B., Iwaniec, T.: p-Harmonic equation and quasiregular mappings. Banach Center Publ. 19 (1), 25-38 (1987).
  • [4] Cheung, L-F., Leung, P-F.: Some results on stable p-harmonic maps. Glasgow Math. J. 36, 77-80 (1994).
  • [5] Eells, J., Sampson, J. H.:Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109-160 (1964).
  • [6] Fardoun, A.: On equivariant p-harmonic maps. Ann. Inst. Henri. Poincare. 15, 25-72 (1998).
  • [7] Jiang, G. Y.: 2-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A. 7 (4), 389-402 (1986).
  • [8] Mohammed Cherif, A.: On the p-harmonic and p-biharmonic maps. J. Geom. 109 (41), (2018).
  • [9] Nagano, T., Sumi M.: Stability of p-harmonic maps. Tokyo J. Math. 15 (2), 475-482 (1992).
  • [10] Xin Y.: Geometry of harmonic maps. Fudan University (1996).
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Bouchra Merdji 0000-0002-0076-6001

Ahmed Mohammed Cherif 0000-0002-6155-0976

Early Pub Date July 23, 2022
Publication Date October 31, 2022
Acceptance Date July 3, 2022
Published in Issue Year 2022 Volume: 15 Issue: 2

Cite

APA Merdji, B., & Mohammed Cherif, A. (2022). On the Generalized of p-harmonic Maps. International Electronic Journal of Geometry, 15(2), 183-191. https://doi.org/10.36890/iejg.1085856
AMA Merdji B, Mohammed Cherif A. On the Generalized of p-harmonic Maps. Int. Electron. J. Geom. October 2022;15(2):183-191. doi:10.36890/iejg.1085856
Chicago Merdji, Bouchra, and Ahmed Mohammed Cherif. “On the Generalized of P-Harmonic Maps”. International Electronic Journal of Geometry 15, no. 2 (October 2022): 183-91. https://doi.org/10.36890/iejg.1085856.
EndNote Merdji B, Mohammed Cherif A (October 1, 2022) On the Generalized of p-harmonic Maps. International Electronic Journal of Geometry 15 2 183–191.
IEEE B. Merdji and A. Mohammed Cherif, “On the Generalized of p-harmonic Maps”, Int. Electron. J. Geom., vol. 15, no. 2, pp. 183–191, 2022, doi: 10.36890/iejg.1085856.
ISNAD Merdji, Bouchra - Mohammed Cherif, Ahmed. “On the Generalized of P-Harmonic Maps”. International Electronic Journal of Geometry 15/2 (October 2022), 183-191. https://doi.org/10.36890/iejg.1085856.
JAMA Merdji B, Mohammed Cherif A. On the Generalized of p-harmonic Maps. Int. Electron. J. Geom. 2022;15:183–191.
MLA Merdji, Bouchra and Ahmed Mohammed Cherif. “On the Generalized of P-Harmonic Maps”. International Electronic Journal of Geometry, vol. 15, no. 2, 2022, pp. 183-91, doi:10.36890/iejg.1085856.
Vancouver Merdji B, Mohammed Cherif A. On the Generalized of p-harmonic Maps. Int. Electron. J. Geom. 2022;15(2):183-91.