Research Article
BibTex RIS Cite

On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds

Year 2023, Volume: 16 Issue: 1, 254 - 265, 30.04.2023
https://doi.org/10.36890/iejg.1274538

Abstract

We establish some properties of the $k$-slant and pointwise $k$-slant submanifolds of an almost contact metric manifold with a special view towards the integrability of the component distributions. We prove some results for totally geodesic pointwise $k$-slant submanifolds. Furthermore, we obtain some nonexistence results for pointwise $k$-slant submanifolds in the almost contact metric setting.

References

  • [1] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Semi-Slant Submanifolds of a Sasakian Manifold. Geom. Dedicata. 78, 183–199 (1999). https://doi.org/10.1023/A:1005241320631
  • [2] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven (1990).
  • [3] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990). https://doi.org/10.1017/S0004972700017925
  • [4] Chen, B.-Y., Garay, O.J.: Pointwise slant submanifolds in almost Hermitian manifolds. Turkish J. Math. 36, 630–640 (2012). https://doi.org/10.3906/mat-1101-34
  • [5] De, U.C., Sarkar, A.: On pseudo-slant submanifolds of trans-Sasakian manifolds. Proceedings of the Estonian Academy of Sciences. 60(1), 1–11 (2011). https://doi.org/10.3176/proc.2011.1.01
  • [6] Etayo, F.: On quasi-slant submanifolds of an almost Hermitian manifold. Publ. Math. Debrecen. 53(1-2), 217–223 (1998).
  • [7] Laţcu, A.C., La¸tcu, D.R.: Differentiability of the slant function of a general pointwise slant distribution. J. Geom. 113, 31 (2022). https://doi.org/10.1007/s00022-022-00645-3
  • [8] Laţcu, D.R.: k-slant distributions. (2022). https://doi.org/10.48550/arXiv.2208.11214
  • [9] Marrero, J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992). https://doi.org/10.1007/BF01760000
  • [10] Oubina, J.A.: New classes of almost contact metric structures. Publ. Math. Debrecen. 32(3-4), 187–193 (1985).
  • [11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. ¸Stiin¸t. Univ. "Al. I. Cuza" Ia¸si. 40, 55–61 (1994).
  • [12] Perktaş, S.-Y., Blaga, A.M., Kiliç, E.: Almost bi-slant submanifolds of an almost contact manifold. J. Geom. 112, 2 (2021). https://doi.org/10.1007/s00022-020-00564-1
  • [13] Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure I. Tohoku Math. J. 12(2), 459–476 (1960). https://doi.org/10.2748/tmj/1178244407
  • [14]Şahin, B.: Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95(3), 207–226 (2009). DOI 10.4064/ap95-3-2
Year 2023, Volume: 16 Issue: 1, 254 - 265, 30.04.2023
https://doi.org/10.36890/iejg.1274538

Abstract

References

  • [1] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., Fernandez, M.: Semi-Slant Submanifolds of a Sasakian Manifold. Geom. Dedicata. 78, 183–199 (1999). https://doi.org/10.1023/A:1005241320631
  • [2] Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke Universiteit Leuven (1990).
  • [3] Chen, B.-Y.: Slant immersions. Bull. Austral. Math. Soc. 41, 135–147 (1990). https://doi.org/10.1017/S0004972700017925
  • [4] Chen, B.-Y., Garay, O.J.: Pointwise slant submanifolds in almost Hermitian manifolds. Turkish J. Math. 36, 630–640 (2012). https://doi.org/10.3906/mat-1101-34
  • [5] De, U.C., Sarkar, A.: On pseudo-slant submanifolds of trans-Sasakian manifolds. Proceedings of the Estonian Academy of Sciences. 60(1), 1–11 (2011). https://doi.org/10.3176/proc.2011.1.01
  • [6] Etayo, F.: On quasi-slant submanifolds of an almost Hermitian manifold. Publ. Math. Debrecen. 53(1-2), 217–223 (1998).
  • [7] Laţcu, A.C., La¸tcu, D.R.: Differentiability of the slant function of a general pointwise slant distribution. J. Geom. 113, 31 (2022). https://doi.org/10.1007/s00022-022-00645-3
  • [8] Laţcu, D.R.: k-slant distributions. (2022). https://doi.org/10.48550/arXiv.2208.11214
  • [9] Marrero, J.C.: The local structure of trans-Sasakian manifolds. Ann. Mat. Pura Appl. 162, 77–86 (1992). https://doi.org/10.1007/BF01760000
  • [10] Oubina, J.A.: New classes of almost contact metric structures. Publ. Math. Debrecen. 32(3-4), 187–193 (1985).
  • [11] Papaghiuc, N.: Semi-slant submanifolds of a Kaehlerian manifold. An. ¸Stiin¸t. Univ. "Al. I. Cuza" Ia¸si. 40, 55–61 (1994).
  • [12] Perktaş, S.-Y., Blaga, A.M., Kiliç, E.: Almost bi-slant submanifolds of an almost contact manifold. J. Geom. 112, 2 (2021). https://doi.org/10.1007/s00022-020-00564-1
  • [13] Sasaki, S.: On differentiable manifolds with certain structures which are closely related to almost contact structure I. Tohoku Math. J. 12(2), 459–476 (1960). https://doi.org/10.2748/tmj/1178244407
  • [14]Şahin, B.: Warped product submanifolds of Kaehler manifolds with a slant factor. Ann. Pol. Math. 95(3), 207–226 (2009). DOI 10.4064/ap95-3-2
There are 14 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Article
Authors

Adara M. Blaga 0000-0003-0237-3866

Dan Radu Latcu 0000-0003-1201-7400

Publication Date April 30, 2023
Acceptance Date April 9, 2023
Published in Issue Year 2023 Volume: 16 Issue: 1

Cite

APA Blaga, A. M., & Latcu, D. R. (2023). On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds. International Electronic Journal of Geometry, 16(1), 254-265. https://doi.org/10.36890/iejg.1274538
AMA Blaga AM, Latcu DR. On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds. Int. Electron. J. Geom. April 2023;16(1):254-265. doi:10.36890/iejg.1274538
Chicago Blaga, Adara M., and Dan Radu Latcu. “On Pointwise K-Slant Submanifolds of Almost Contact Metric Manifolds”. International Electronic Journal of Geometry 16, no. 1 (April 2023): 254-65. https://doi.org/10.36890/iejg.1274538.
EndNote Blaga AM, Latcu DR (April 1, 2023) On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds. International Electronic Journal of Geometry 16 1 254–265.
IEEE A. M. Blaga and D. R. Latcu, “On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds”, Int. Electron. J. Geom., vol. 16, no. 1, pp. 254–265, 2023, doi: 10.36890/iejg.1274538.
ISNAD Blaga, Adara M. - Latcu, Dan Radu. “On Pointwise K-Slant Submanifolds of Almost Contact Metric Manifolds”. International Electronic Journal of Geometry 16/1 (April 2023), 254-265. https://doi.org/10.36890/iejg.1274538.
JAMA Blaga AM, Latcu DR. On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds. Int. Electron. J. Geom. 2023;16:254–265.
MLA Blaga, Adara M. and Dan Radu Latcu. “On Pointwise K-Slant Submanifolds of Almost Contact Metric Manifolds”. International Electronic Journal of Geometry, vol. 16, no. 1, 2023, pp. 254-65, doi:10.36890/iejg.1274538.
Vancouver Blaga AM, Latcu DR. On Pointwise k-Slant Submanifolds of Almost Contact Metric Manifolds. Int. Electron. J. Geom. 2023;16(1):254-65.