Research Article
BibTex RIS Cite
Year 2024, Volume: 17 Issue: 2, 358 - 377, 27.10.2024
https://doi.org/10.36890/iejg.1352531

Abstract

References

  • [1] Chen, B.Y., Deshmukh, S.: Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediter. J. Math. 15 (5) (2018), 194.
  • [2] Friedmann, A., Schouten, J. A.: Uber die geometrie der halbsymmetrischen ubertragungen. Math. Z. 21 (1) (1924), 211-223.
  • [3] Gezer, A.: On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci. 119 (3) (2009), 345-350.
  • [4] Li, Y., Gezer, A., Karakas, E.: Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics 8 (8) (2023), 17335–17353.
  • [5] Golab, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), 249–254.
  • [6] Guler, S., Crâ¸smareanu, M.: ˇ Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math. 43 (2019), 2631–2641.
  • [7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 57 (1) (2003), 469–483.
  • [8] Hayden, H. A.: Sub-spaces of a space with torsion. Proc. London Math. Soc. S2-34 (1932), 27-50.
  • [9] Hinterleitner, I., Kiosak, V. A.: φ(Ric)-vector fields in Riemannian spaces. Arch. Math. 44 (2008), 385–390.
  • [10] Kamilya, D., De, U. C.: Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold. Indian J. Pure and Appl. Math. 26 (1) (1995), 29-34.
  • [11] Poyraz, N., Yoldas, H. I.: Chen inequalities for submanifolds of real space forms with a Ricci quarter-symmetric metric connection. Int. Electron. J. Geom. 12 (1) (2019), 102–110.
  • [12] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10 (3) (1958), 338-354.
  • [13] Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 15 (1994), 1-10.
  • [14] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 19 (1998), 49-55.
  • [15] Yano, K.: On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  • [16] Yano, K.: Differential geometry on complex and almost complex spaces. The Macmillan Company, New York 1965.
  • [17] Yano, K., Imai, T.: Quarter-symmetric metric connections and their curvature tensors. Tensor 38 (1982), 13-18.
  • [18] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker, Inc., New York 1973.
  • [19] Udri¸ste, C.: Riemann flow and Riemann wave via bialternate product Riemannian metric. https://arxiv.org/abs/1112.4279 (2012).
  • [20] Hirica, I. E., Udriste, C.: Ricci and Riemann solitons. Balkan J. Geom. Appl. 21 (2) (2016), 35–44.

Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection

Year 2024, Volume: 17 Issue: 2, 358 - 377, 27.10.2024
https://doi.org/10.36890/iejg.1352531

Abstract

Consider $TM$ as the tangent bundle of a (pseudo-)Riemannian manifold $M$, equipped with a Ricci quarter-symmetric metric connection $\overline{\nabla }$. This research article aims to accomplish two primary objectives. Firstly, the paper undertakes the classification of specific types of vector fields, including incompressible vector fields, harmonic vector fields, concurrent vector fields, conformal vector fields, projective vector fields, and $% \widetilde{\varphi }(Ric)$ vector fields, within the framework of $\overline{% \nabla }$ on $T\dot{M}$. Secondly, the paper establishes the necessary and sufficient conditions for the tangent bundle $TM$ to become as a Riemannian soliton and a generalized Ricci-Yamabe soliton with regard to the connection $\overline{\nabla }$.

References

  • [1] Chen, B.Y., Deshmukh, S.: Yamabe and quasi-Yamabe solitons on Euclidean submanifolds. Mediter. J. Math. 15 (5) (2018), 194.
  • [2] Friedmann, A., Schouten, J. A.: Uber die geometrie der halbsymmetrischen ubertragungen. Math. Z. 21 (1) (1924), 211-223.
  • [3] Gezer, A.: On infinitesimal conformal transformations of the tangent bundles with the synectic lift of a Riemannian metric. Proc. Indian Acad. Sci. 119 (3) (2009), 345-350.
  • [4] Li, Y., Gezer, A., Karakas, E.: Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Mathematics 8 (8) (2023), 17335–17353.
  • [5] Golab, S.: On semi-symmetric and quarter-symmetric linear connections. Tensor (N.S.) 29 (1975), 249–254.
  • [6] Guler, S., Crâ¸smareanu, M.: ˇ Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy. Turkish J. Math. 43 (2019), 2631–2641.
  • [7] Hasegawa, I., Yamauchi, K.: Infinitesimal projective transformations on tangent bundles with lift connections. Sci. Math. Jpn. 57 (1) (2003), 469–483.
  • [8] Hayden, H. A.: Sub-spaces of a space with torsion. Proc. London Math. Soc. S2-34 (1932), 27-50.
  • [9] Hinterleitner, I., Kiosak, V. A.: φ(Ric)-vector fields in Riemannian spaces. Arch. Math. 44 (2008), 385–390.
  • [10] Kamilya, D., De, U. C.: Some properties of a Ricci quarter-symmetric metric connection in a Riemannian manifold. Indian J. Pure and Appl. Math. 26 (1) (1995), 29-34.
  • [11] Poyraz, N., Yoldas, H. I.: Chen inequalities for submanifolds of real space forms with a Ricci quarter-symmetric metric connection. Int. Electron. J. Geom. 12 (1) (2019), 102–110.
  • [12] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Math. J. 10 (3) (1958), 338-354.
  • [13] Yamauchi, K.: On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 15 (1994), 1-10.
  • [14] Yamauchi, K.: On infinitesimal projective transformations of the tangent bundles with the complete lift metric over Riemannian manifolds. Ann. Rep. Asahikawa Med. Coll. 19 (1998), 49-55.
  • [15] Yano, K.: On semi-symmetric metric connection. Rev. Roumaine Math. Pures Appl. 15 (1970), 1579-1586.
  • [16] Yano, K.: Differential geometry on complex and almost complex spaces. The Macmillan Company, New York 1965.
  • [17] Yano, K., Imai, T.: Quarter-symmetric metric connections and their curvature tensors. Tensor 38 (1982), 13-18.
  • [18] Yano, K., Ishihara, S.: Tangent and cotangent bundles. Marcel Dekker, Inc., New York 1973.
  • [19] Udri¸ste, C.: Riemann flow and Riemann wave via bialternate product Riemannian metric. https://arxiv.org/abs/1112.4279 (2012).
  • [20] Hirica, I. E., Udriste, C.: Ricci and Riemann solitons. Balkan J. Geom. Appl. 21 (2) (2016), 35–44.
There are 20 citations in total.

Details

Primary Language English
Subjects Algebraic and Differential Geometry
Journal Section Research Article
Authors

Aydın Gezer

Erkan Karakaş

Early Pub Date September 16, 2024
Publication Date October 27, 2024
Acceptance Date March 8, 2024
Published in Issue Year 2024 Volume: 17 Issue: 2

Cite

APA Gezer, A., & Karakaş, E. (2024). Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry, 17(2), 358-377. https://doi.org/10.36890/iejg.1352531
AMA Gezer A, Karakaş E. Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. October 2024;17(2):358-377. doi:10.36890/iejg.1352531
Chicago Gezer, Aydın, and Erkan Karakaş. “Classification of Vector Fields and Soliton Structures on a Tangent Bundle With a Ricci Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 17, no. 2 (October 2024): 358-77. https://doi.org/10.36890/iejg.1352531.
EndNote Gezer A, Karakaş E (October 1, 2024) Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. International Electronic Journal of Geometry 17 2 358–377.
IEEE A. Gezer and E. Karakaş, “Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection”, Int. Electron. J. Geom., vol. 17, no. 2, pp. 358–377, 2024, doi: 10.36890/iejg.1352531.
ISNAD Gezer, Aydın - Karakaş, Erkan. “Classification of Vector Fields and Soliton Structures on a Tangent Bundle With a Ricci Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry 17/2 (October 2024), 358-377. https://doi.org/10.36890/iejg.1352531.
JAMA Gezer A, Karakaş E. Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2024;17:358–377.
MLA Gezer, Aydın and Erkan Karakaş. “Classification of Vector Fields and Soliton Structures on a Tangent Bundle With a Ricci Quarter-Symmetric Metric Connection”. International Electronic Journal of Geometry, vol. 17, no. 2, 2024, pp. 358-77, doi:10.36890/iejg.1352531.
Vancouver Gezer A, Karakaş E. Classification of Vector Fields and Soliton Structures on a Tangent Bundle with a Ricci Quarter-Symmetric Metric Connection. Int. Electron. J. Geom. 2024;17(2):358-77.