Research Article
BibTex RIS Cite

Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy

Year 2020, Volume: 4 Issue: 1, 71 - 78, 23.06.2020

Abstract

Near-infrared (NIR) diffuse reflectance and Mid-infrared-attenuated total reflectance (MIR-ATR) spectroscopy were evaluated to determine the dried green pea seed adulteration in ground pistachio nuts. Sixty-three samples (51 for calibration and 12 for external validation sets) of ground pistachio nuts were deliberately adulterated with varying levels of dried green pea seeds (ranging from 0 to 50% (w/w)). Subsequently, both NIR and MIR-ATR spectra of the samples were collected separately. The quantitative predictions of green pea ratio in the samples were achieved using PLSR (Partial Least Squares Regression). Based on the PLSR models, SEP (Standard error of prediction) values of the models were 2.55 and 9.14% for NIR and MIR-ATR, respectively. The rPred (Correlation coefficient of prediction) values of the models were 0.99 and 0.80 for NIR and MIR-ATR, respectively. Additionally, the nondimensional values of RPD (Residual Predictive Deviation) for NIR and MIR-ATR spectra were calculated as 5.7 and 1.6, respectively. These results showed that the NIR-based models provided a distinct advantage over MIR-ATR-based models in accurately estimating the ratio of the dried green pea seeds in binary mixtures. Therefore, NIR spectroscopy has the potential and could be implemented in the routine applications of green pea detection in ground pistachio nuts.

References

  • Aboul-Enein, Y., Bunaciu, A., & Fleschin, S. (2014). Evaluation of the protein secondary structures using Fourier Transform Infrared Spectroscopy. Gazi University Journal of Science, 27(1), 637-644.
  • Asensio, L., González, I., García, T., & Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19(1), 1-8.
  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(9), 1073-1101.
  • Bulló, M., Juanola-Falgarona, M., Hernández-Alonso, P., & Salas-Salvadó, J. (2015). Nutrition attributes and health effects of pistachio nuts. British Journal of Nutrition, 113(S2), S79-S93.
  • Cautela, D., Laratta, B., Santelli, F., Trifirò, A., Servillo, L., & Castaldo, D. (2008). Estimating bergamot juice adulteration of lemon juice by high-performance liquid chromatography (HPLC) analysis of flavanone glycosides. Journal of Agricultural and Food Chemistry, 56(13), 5407-5414.
  • Çağlar, A., Tomar, O., Vatansever, H., & Ekmekçi, E. (2017). Antepfıstığı (Pistacia vera L.) ve insan sağlığı üzerine etkileri. Akademik Gıda, 15(4), 436-447.
  • Çavuş, F., Us, M. F., & Güzelsoy, N. A. Assesing Pistachio Nut (Pistacia vera L.) Adulteration with Green Pea (Pisum sativum L.) by Untargeted Liquid Chromatography-(quadrupole-time of flight)-Mass Spectrometry Method and Chemometrics. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19), 34-41.
  • Chavan, U. D., Shahidi, F., Bal, A. K., & McKenzie, D. B. (1999). Physico-chemical properties and nutrient composition of beach pea (Lathyrus maritimus L.). Food Chemistry, 66(1), 43-50.
  • Cuadrado, M. U., De Castro, M. L., Juan, P. P., & Gómez-Nieto, M. A. (2005). Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta, 66(1), 218-224.
  • Dreher, M. L. (2012). Pistachio nuts: composition and potential health benefits. Nutrition reviews, 70(4), 234-240.
  • Eksi-Kocak, H., Mentes-Yilmaz, O., & Boyaci, I. H. (2016). Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. European Food Research and Technology, 242(2), 271-277.
  • Guo, H., Kimura, T., & Furutani, Y. (2013). Distortion of the amide-I and-II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chemical Physics, 419, 8-16.
  • Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, A. R., Gilbert, E. P., & Gidley, M. J. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydrate Polymers, 75(2), 236-245.
  • Jouppila, K., Kansikas, J., & Roos, Y. H. (1998). Factors affecting crystallization and crystallization kinetics in amorphous corn starch. Carbohydrate Polymers, 36(2-3), 143-149.
  • Kashaninejad, M., & Tabil, L. G. (2011). Pistachio (Pistacia vera L.). In: Postharvest biology and technology of tropical and subtropical fruits. (Woodhead Publishing, 218-247).
  • Kropf, U., Golob, T., Nečemer, M., Kump, P., Korošec, M., Bertoncelj, J., & Ogrinc, N. (2010). Carbon and nitrogen natural stable isotopes in Slovene honey: adulteration and botanical and geographical aspects. Journal of Agricultural and Food Chemistry, 58(24), 12794-12803.
  • Küçüköner, E., & Yurt, B. (2003). Some chemical characteristics of Pistacia vera varieties produced in Turkey. European Food Research and Technology, 217(4), 308-310.
  • MacMahon, S., Begley, T. H., Diachenko, G. W., & Stromgren, S. A. (2012). A liquid chromatography–tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods. Journal of Chromatography A, 1220, 101-107.
  • Pu, Y.Y., O’Donnell, C., Tobin, J., & O’Shea, N. (2020). Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. International Dairy Journal (In Press).
  • Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: composition, structure and properties—a review. Starch‐Stärke, 54(6), 217-234.
  • Rodriguez-Saona L., Ayvaz H., Wehling R.L. (2017) Infrared and Raman Spectroscopy. In: Nielsen S. (eds) Food Analysis. Food Science Text Series. (Springer, Cham, 107-127).
  • Rodriguez-Saona, L. E., Giusti, M. M., & Shotts, M. (2016). Advances in infrared spectroscopy for food authenticity testing. In Advances in food authenticity testing (pp. 71-116). Woodhead Publishing.
  • Ruiz-Matute, A. I., Soria, A. C., Martínez-Castro, I., & Sanz, M. L. (2007). A new methodology based on GC− MS to detect honey adulteration with commercial syrups. Journal of Agricultural and Food Chemistry, 55(18), 7264-7269.
  • Tiwari, B. K., Brunton, N. P., & Brennan, C. (2013). Handbook of plant food phytochemicals: sources, stability and extraction. John Wiley & Sons.
  • Tulbek, M. C., Lam, R. S. H., Asavajaru P., & Lam, A., (2017). Pea: A sustainable vegetable protein crop. In: Sustainable protein sources. (Academic Press, 145-164).
  • Valand, R., Tanna, S., Lawson, G., & Bengtström, L. (2020). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Additives & Contaminants: Part A, 37(1), 19-38.
  • Williams, P.C. (2001). Implementation of near-infrared technology. In: Near-Infrared Technology in the Agricultural and Food Industries. (American Association of Cereal Chemists, Minnesota, 145-169).
  • Zhao, Y., Zhang, B., Chen, G., Chen, A., Yang, S., & Ye, Z. (2014). Recent developments in application of stable isotope analysis on agro-product authenticity and traceability. Food chemistry, 145, 300-305.
Year 2020, Volume: 4 Issue: 1, 71 - 78, 23.06.2020

Abstract

References

  • Aboul-Enein, Y., Bunaciu, A., & Fleschin, S. (2014). Evaluation of the protein secondary structures using Fourier Transform Infrared Spectroscopy. Gazi University Journal of Science, 27(1), 637-644.
  • Asensio, L., González, I., García, T., & Martín, R. (2008). Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control, 19(1), 1-8.
  • Barth, A. (2007). Infrared spectroscopy of proteins. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(9), 1073-1101.
  • Bulló, M., Juanola-Falgarona, M., Hernández-Alonso, P., & Salas-Salvadó, J. (2015). Nutrition attributes and health effects of pistachio nuts. British Journal of Nutrition, 113(S2), S79-S93.
  • Cautela, D., Laratta, B., Santelli, F., Trifirò, A., Servillo, L., & Castaldo, D. (2008). Estimating bergamot juice adulteration of lemon juice by high-performance liquid chromatography (HPLC) analysis of flavanone glycosides. Journal of Agricultural and Food Chemistry, 56(13), 5407-5414.
  • Çağlar, A., Tomar, O., Vatansever, H., & Ekmekçi, E. (2017). Antepfıstığı (Pistacia vera L.) ve insan sağlığı üzerine etkileri. Akademik Gıda, 15(4), 436-447.
  • Çavuş, F., Us, M. F., & Güzelsoy, N. A. Assesing Pistachio Nut (Pistacia vera L.) Adulteration with Green Pea (Pisum sativum L.) by Untargeted Liquid Chromatography-(quadrupole-time of flight)-Mass Spectrometry Method and Chemometrics. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19), 34-41.
  • Chavan, U. D., Shahidi, F., Bal, A. K., & McKenzie, D. B. (1999). Physico-chemical properties and nutrient composition of beach pea (Lathyrus maritimus L.). Food Chemistry, 66(1), 43-50.
  • Cuadrado, M. U., De Castro, M. L., Juan, P. P., & Gómez-Nieto, M. A. (2005). Comparison and joint use of near infrared spectroscopy and Fourier transform mid infrared spectroscopy for the determination of wine parameters. Talanta, 66(1), 218-224.
  • Dreher, M. L. (2012). Pistachio nuts: composition and potential health benefits. Nutrition reviews, 70(4), 234-240.
  • Eksi-Kocak, H., Mentes-Yilmaz, O., & Boyaci, I. H. (2016). Detection of green pea adulteration in pistachio nut granules by using Raman hyperspectral imaging. European Food Research and Technology, 242(2), 271-277.
  • Guo, H., Kimura, T., & Furutani, Y. (2013). Distortion of the amide-I and-II bands of an α-helical membrane protein, pharaonis halorhodopsin, depends on thickness of gold films utilized for surface-enhanced infrared absorption spectroscopy. Chemical Physics, 419, 8-16.
  • Htoon, A., Shrestha, A. K., Flanagan, B. M., Lopez-Rubio, A., Bird, A. R., Gilbert, E. P., & Gidley, M. J. (2009). Effects of processing high amylose maize starches under controlled conditions on structural organisation and amylase digestibility. Carbohydrate Polymers, 75(2), 236-245.
  • Jouppila, K., Kansikas, J., & Roos, Y. H. (1998). Factors affecting crystallization and crystallization kinetics in amorphous corn starch. Carbohydrate Polymers, 36(2-3), 143-149.
  • Kashaninejad, M., & Tabil, L. G. (2011). Pistachio (Pistacia vera L.). In: Postharvest biology and technology of tropical and subtropical fruits. (Woodhead Publishing, 218-247).
  • Kropf, U., Golob, T., Nečemer, M., Kump, P., Korošec, M., Bertoncelj, J., & Ogrinc, N. (2010). Carbon and nitrogen natural stable isotopes in Slovene honey: adulteration and botanical and geographical aspects. Journal of Agricultural and Food Chemistry, 58(24), 12794-12803.
  • Küçüköner, E., & Yurt, B. (2003). Some chemical characteristics of Pistacia vera varieties produced in Turkey. European Food Research and Technology, 217(4), 308-310.
  • MacMahon, S., Begley, T. H., Diachenko, G. W., & Stromgren, S. A. (2012). A liquid chromatography–tandem mass spectrometry method for the detection of economically motivated adulteration in protein-containing foods. Journal of Chromatography A, 1220, 101-107.
  • Pu, Y.Y., O’Donnell, C., Tobin, J., & O’Shea, N. (2020). Review of near-infrared spectroscopy as a process analytical technology for real-time product monitoring in dairy processing. International Dairy Journal (In Press).
  • Ratnayake, W. S., Hoover, R., & Warkentin, T. (2002). Pea starch: composition, structure and properties—a review. Starch‐Stärke, 54(6), 217-234.
  • Rodriguez-Saona L., Ayvaz H., Wehling R.L. (2017) Infrared and Raman Spectroscopy. In: Nielsen S. (eds) Food Analysis. Food Science Text Series. (Springer, Cham, 107-127).
  • Rodriguez-Saona, L. E., Giusti, M. M., & Shotts, M. (2016). Advances in infrared spectroscopy for food authenticity testing. In Advances in food authenticity testing (pp. 71-116). Woodhead Publishing.
  • Ruiz-Matute, A. I., Soria, A. C., Martínez-Castro, I., & Sanz, M. L. (2007). A new methodology based on GC− MS to detect honey adulteration with commercial syrups. Journal of Agricultural and Food Chemistry, 55(18), 7264-7269.
  • Tiwari, B. K., Brunton, N. P., & Brennan, C. (2013). Handbook of plant food phytochemicals: sources, stability and extraction. John Wiley & Sons.
  • Tulbek, M. C., Lam, R. S. H., Asavajaru P., & Lam, A., (2017). Pea: A sustainable vegetable protein crop. In: Sustainable protein sources. (Academic Press, 145-164).
  • Valand, R., Tanna, S., Lawson, G., & Bengtström, L. (2020). A review of Fourier Transform Infrared (FTIR) spectroscopy used in food adulteration and authenticity investigations. Food Additives & Contaminants: Part A, 37(1), 19-38.
  • Williams, P.C. (2001). Implementation of near-infrared technology. In: Near-Infrared Technology in the Agricultural and Food Industries. (American Association of Cereal Chemists, Minnesota, 145-169).
  • Zhao, Y., Zhang, B., Chen, G., Chen, A., Yang, S., & Ye, Z. (2014). Recent developments in application of stable isotope analysis on agro-product authenticity and traceability. Food chemistry, 145, 300-305.
There are 28 citations in total.

Details

Primary Language English
Subjects Agricultural, Veterinary and Food Sciences
Journal Section Original Papers
Authors

Riza Temizkan 0000-0001-5746-8921

Muhammed Ali Doğan 0000-0002-5524-7567

Orhan Atakan 0000-0002-8155-5053

Burak Alptuğ Nazlım 0000-0002-1779-9862

Hüseyin Ayvaz 0000-0001-9705-6921

Publication Date June 23, 2020
Submission Date April 21, 2020
Acceptance Date May 26, 2020
Published in Issue Year 2020 Volume: 4 Issue: 1

Cite

APA Temizkan, R., Doğan, M. A., Atakan, O., Nazlım, B. A., et al. (2020). Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy. International Journal of Agriculture Forestry and Life Sciences, 4(1), 71-78.
AMA Temizkan R, Doğan MA, Atakan O, Nazlım BA, Ayvaz H. Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy. Int J Agric For Life Sci. June 2020;4(1):71-78.
Chicago Temizkan, Riza, Muhammed Ali Doğan, Orhan Atakan, Burak Alptuğ Nazlım, and Hüseyin Ayvaz. “Rapid Detection of Green Pea Adulteration in Ground Pistachio Nuts Using Near and Mid-Infrared Spectroscopy”. International Journal of Agriculture Forestry and Life Sciences 4, no. 1 (June 2020): 71-78.
EndNote Temizkan R, Doğan MA, Atakan O, Nazlım BA, Ayvaz H (June 1, 2020) Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy. International Journal of Agriculture Forestry and Life Sciences 4 1 71–78.
IEEE R. Temizkan, M. A. Doğan, O. Atakan, B. A. Nazlım, and H. Ayvaz, “Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy”, Int J Agric For Life Sci, vol. 4, no. 1, pp. 71–78, 2020.
ISNAD Temizkan, Riza et al. “Rapid Detection of Green Pea Adulteration in Ground Pistachio Nuts Using Near and Mid-Infrared Spectroscopy”. International Journal of Agriculture Forestry and Life Sciences 4/1 (June 2020), 71-78.
JAMA Temizkan R, Doğan MA, Atakan O, Nazlım BA, Ayvaz H. Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy. Int J Agric For Life Sci. 2020;4:71–78.
MLA Temizkan, Riza et al. “Rapid Detection of Green Pea Adulteration in Ground Pistachio Nuts Using Near and Mid-Infrared Spectroscopy”. International Journal of Agriculture Forestry and Life Sciences, vol. 4, no. 1, 2020, pp. 71-78.
Vancouver Temizkan R, Doğan MA, Atakan O, Nazlım BA, Ayvaz H. Rapid detection of green pea adulteration in ground pistachio nuts using near and mid-infrared spectroscopy. Int J Agric For Life Sci. 2020;4(1):71-8.

download