Rayleigh wave speed in a heat conducting transversely isotropic material with thermal relaxation is studied. Phase and group velocity for the first four modes have been computed for aluminum alloy plate at different thermal relaxation times. It is observed that if modal phase velocity decrease with increasing frequency normally dispersive profiles, phase velocity is greater than group velocity and consequently carrier travels faster than the envelope. Thus in such cases if a phase disturbance appears at the beginning of the pulse, then it overtakes and finally it disappears in the front. Rayleigh wave speed is computed the medium and compared. It is observed that thermal relaxation time effect plays a significant role thermoelastic speed of Rayleigh waves at the low values of wave number limits
Other ID | JA66CF33JD |
---|---|
Journal Section | Articles |
Authors | |
Publication Date | March 1, 2014 |
Published in Issue | Year 2014 |