Research Article
BibTex RIS Cite
Year 2024, Volume: 9 Issue: 3, 406 - 417, 31.10.2024
https://doi.org/10.26833/ijeg.1475023

Abstract

References

  • 1. Loucks, D., & Gladwell, J. (1999). Sustainability criteria for water resource systems. United Kingdom: Cambridge University Press.
  • 2. Michalec B. (2021). Seasonal variations in nickel contamination of water and sediments of small dam reservoirs in southern Poland. Carpathian Journal of Earth and Environmental Sciences, 16(2), 349–360. https://doi.org/10.26471/cjees/2021/016/180
  • 3. Wang, J., Zhu, L., Daut, G., Ju, J., Lin, X., Wang, Y., & Zhen, X. (2009). Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology, 10(2), 149–158. https://doi.org/10.1007/S10201-009-0266-8
  • 4. Lachhab, A., Booterbaugh, A., & Beren, M. (2015). Bathymetry and Sediment Accumulation of Walker Lake, PA Using Two GPR Antennas in a New Integrated Method. Journal of Environmental and Engineering Geophysics, 20(3), 245–255. https://doi.org/10.2113/JEEG20.3.245
  • 5. Ławniczak, A., Choiński, A., & Kurzyca, I. (2011). Dynamics of lake morphometry and bathymetry in various hydrological conditions. Polish Journal of Environmental Studies, 20(4), 931–940.
  • 6. Mohamed, H., Negm, A., Zahran, M., & Saavedra, O. (2016). Bathymetry determination from high resolution satellite imagery using ensemble learning algorithms in Shallow Lakes: Case study El-Burullus Lake. International Journal of Environmental Science and Development, 7(4), 295–301. https://doi.org/10.7763/IJESD.2016.V7.787
  • 7. Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., … Roelfsema, C. (2011). Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography: Methods, 9(SEP), 396–425. https://doi.org/10.4319/lom.2011.9.396
  • 8. Moses, S. A., Janaki, L., Joseph, S., Justus, J., & Vimala, S. R. (2011). Influence of lake morphology on water quality. Environmental Monitoring and Assessment, 182(1–4), 443–454. https://doi.org/10.1007/S10661-011-1888-Y
  • 9. Opeyemi, A. J., Rasheed, A. B., Margret, O. O., & Olusola, A. R. (2016). Baseline physico-chemical and bathymetry assessment of Mahin Lake, Southwestern, Nigeria, 7(4), 33–41. https://doi.org/10.5897/JOMS2016.0133
  • 10. Rotaru, E., Le Coz, J., Drobot, R., Adler, M. J., Dramais, G., Rotaru, E., Adler, M.-J. (2006). ADcp measurements of suspended sediment fluxes in Banat rivers, Romania. Balwois .
  • 11. Honegger, D. A., Haller, M. C., & Holman, R. A. (2020). High-resolution bathymetry estimates via X-band marine radar: 2. Effects of currents at tidal inlets. Coastal Engineering, 156. https://doi.org/10.1016/J.COASTALENG.2019.103626
  • 12. Mejia-Olivares, C. J., Haigh, I. D., Lewis, M. J., & Neill, S. P. (2020). Sensitivity assessment of bathymetry and choice of tidal constituents on tidal-stream energy resource characterisation in the Gulf of California, Mexico. Applied Ocean Research, 102. https://doi.org/10.1016/J.APOR.2020.102281
  • 13. Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. https://doi.org/10.1177/0309133309105657
  • 14. Villalpando, F., Tuxpan, J., Ramos-Leal, J. A., & Carranco-Lozada, S. (2020). New Framework Based on Fusion Information from Multiple Landslide Data Sources and 3D Visualization. Journal of Earth Science, 31(1), 159–168. https://doi.org/10.1007/S12583-019-1243-8
  • 15. Makineci, H. B. (2016). İnsansız hava araçları lidar etkileşimi. Geomatik, 1(1), 19–23.
  • 16. Nhamo, L., Magidi, J., & Nyamugama, A. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture.
  • 17. Taddia, Y., Russo, P., Lovo, S., & Pellegrinelli, A. (2020). Multispectral UAV monitoring of submerged seaweed in shallow water. Applied Geomatics, 12, 19–34. https://doi.org/10.1007/S12518-019-00270-X
  • 18. Cook, K. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208.
  • 19. Koparan, C., Koc, A., & Privette, C. (2018). In situ water quality measurements using an unmanned aerial vehicle (UAV) system. Water, 10(3), 264.
  • 20. Kim, J., Baek, D., & Seo, I. (2019). Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method. Geomorphology, 341, 102–114.
  • 21. Amlashi, H. H., Samadzadegan, F., Dadrass Javan, F., & Savadkouhi, M. (2020). Comparing the accuracy of GNSS positioning variants for uav based 3D map generation. isprs-archives.copernicus.orgH Haddadi Amlashi, F SamadzadegaThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 443–449. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-443-2020
  • 22. Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • 23. Ahmet, Ş., & Yakar, M. (2018). Photogrammetric modelling of hasbey dar’ülhuffaz (masjid) using an unmanned aerial vehicle. Journal of Engineering and Geosciences, 3(1), 6–011. https://doi.org/10.26833/ijeg.328919
  • 24. Lin, H., Chen, M., Lu, G., Zhu, Q., Gong, J., You, X., … Hu, M. (2013). Virtual Geographic Environments (VGEs): A New Generation of Geographic Analysis Tool. Earth-Science Reviews, 126, 74–84. https://doi.org/10.1016/J.EARSCIREV.2013.08.001
  • 25. Lin, H., Chen, M., & Lu, G. (2013). Virtual geographic environment: a workspace for computer-aided geographic experiments. Annals of the Association of American Geographers, 103(3), 465–482. https://doi.org/10.1080/00045608.2012.689234
  • 26. Mekni, M. (2012). Abstraction of informed virtual geographic environments. Geo-spatial Information Science, 15(1), 27–36. https://doi.org/10.1080/10095020.2012.708150
  • 27. Chen, M., Lin, H., Kolditz, O., & Chen, C. (2015). Developing dynamic virtual geographic environments (VGEs) for geographic research. Environmental Earth Sciences, 74(10), 6975–6980. https://doi.org/10.1007/S12665-015-4761-4
  • 28. Lin, H., Batty, M., Jørgensen, S., Bojie, F., Milan, K., Voinov, A., … Gong, J. (2015). Virtual environments begin to embrace process‐based geographic analysis. Transactions in GIS, 19(4), 493–498. https://doi.org/10.1111/tgis.12167
  • 29. Lü, G., Yu, Z., Zhou, L., Wu, M., Sheng, Y., & Yuan, L. (2015). Data environment construction for virtual geographic environment. Environmental Earth Sciences, 74(10), 7003–7013. https://doi.org/10.1007/s12665-015-4736-5
  • 30. Yan, C., Rink, K., Bilke, L., Nixdorf, E., Yue, T., & Kolditz, O. (2019). Virtual Geographical Environment-Based Environmental Information System for Poyang Lake Basin, 293–308. https://doi.org/10.1007/978-3-319-97725-6_18
  • 31. Chen, M., Lin, H., & Lu, G. (2017). Virtual Geographic Environments. International Encyclopedia of Geography, 1–11. https://doi.org/10.1002/9781118786352.WBIEG0448
  • 32. Zhou, T., Long, Y., Zhang, L., & Tao, F. (2010). Research on geographic environment and area evolution of Lake Ulungur region based on 3S technology. 2010 International Conference on Multimedia Technology, ICMT 2010. https://doi.org/10.1109/ICMULT.2010.5631208
  • 33. Câmara, A. S., Neves, J. N., Muchaxo, J., Fernandes, J. P., Sousa, I., Nobre, E., … Rodrigues, A. C. (1998). Virtual Environments and Water Quality Management. Journal of Infrastructure Systems, 4(1), 28–36. https://doi.org/10.1061/(ASCE)1076-0342(1998)4:1(28)
  • 34. Rink, K., Chen, C., Bilke, L., Liao, Z., Rinke, K., Frassl, M., Kolditz, O. (2018). Virtual geographic environments for water pollution control. International Journal of Digital Earth, 11(4), 397–407. https://doi.org/10.1080/17538947.2016.1265016
  • 35. Liang, J., Gong, J., GIS, Y., & Li, Y. (2015). Realistic rendering for physically based shallow water simulation in Virtual Geographic Environments (VGEs). Taylor & Francis, 21(4), 301–312. https://doi.org/10.1080/19475683.2015.1050064
  • 36. Yan, C., Rink, K., Bilke, L., Nixdorf, E., Yue, T., & Kolditz, O. (2019). Virtual Geographical Environment-Based Environmental Information System for Poyang Lake Basin. Chinese Water Systems, 3, 293–308. https://doi.org/10.1007/978-3-319-97725-6_18
  • 37. Li, W., Zhu, J., Fu, L., Zhu, Q., Guo, Y., & Gong, Y. (2021). A rapid 3D reproduction system of dam-break floods constrained by post-disaster information. Environmental Modelling & Software, (104994), 139.
  • 38. Alvarez, L., Moreno, H., & Segales, A. (2018). Merging unmanned aerial systems (UAS) imagery and echo soundings with an adaptive sampling technique for bathymetric surveys. Remote Sensing, 10(9).
  • 39. Fernández-Lozano, J., & Andrés-Bercianos, R. (2020). On the origin of a remote mountainous natural reserve: Insights from a topo-bathymetry reconstruction of the glacial lake of Truchillas (NW Spain). Quaternary International, 566–567, 16–23. https://doi.org/10.1016/J.QUAINT.2020.02.004
  • 40. Saer, A. El, Stentoumis, C., Kalisperakis, I., & Nomikou, P. (2020). Developing a strategy for precise 3D modelling of large-scale scenes for VR. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 567–574. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-567-2020
  • 41. Kapetanović, N., Kordić, B., & Vasilijević, A. (2020). Autonomous Vehicles Mapping Plitvice Lakes National Park, Croatia. Remote Sensing, 12(22).
  • 42. Kaya, M. (2013). Interaction of Water Quality with Basin Components in Small Water Bodies, 109.
  • 43. Ulvi, A. (2018). Analysis of the utility of the unmanned aerial vehicle (UAV) in volume calculation by using photogrammetric techniques. International Journal of Engineering and Geosciences, 3(2), 43-49. https://doi.org/10.26833/ijeg.377080
  • 44. Akar, A. (2017). Evaluation of accuracy of DEMs obtained from uav-point clouds for different topographical areas. International Journal of Engineering and Geosciences, 2(3), 110-117. https://doi.org/10.26833/ijeg.329717
  • 45. Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural heritage modelling using UAV photogrammetric methods: a case study of Kanlıdivane archeological site. Advanced UAV, 1(1), 24-33.
  • 46. Hamal, S. N. G. (2022). Accuracy of digital maps produced from UAV images in rural areas. Advanced UAV, 2(1), 29-34.
  • 47. Sontek. (2001). Sontek/YSI ADCP Acoustic Doppler Profiler Technical Documentation.
  • 48. Kim, J., Kim, D., Son, G., & Kim, S. (2015). Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP. Journal of the Korean Water Resources Association, 48(5), 367–377. https://doi.org/10.3741/JKWRA.2015.48.5.367

Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey

Year 2024, Volume: 9 Issue: 3, 406 - 417, 31.10.2024
https://doi.org/10.26833/ijeg.1475023

Abstract

The Virtual Geographic Environment (VGEs) is a framework in which real-world information is conveyed and converted into the digital world. It contributes to a better understanding of geographic knowledge by human beings and helps decision-makers by giving them a profound view of geographic concerns like three-dimensional (3D) models. The production of 3D models is essential for the characterization, monitoring, and management of water areas. This study aims to expose the 3D model of the pond in the presence of Unmanned Aerial Vehicle (UAV) and Acoustic Doppler Profile (ACDP) bathymetry to precisely determine the actual amount of water in the pond for possible water problems in the future. Moreover, determine how the sediments carried by the mainstream and side tributaries feeding the pond affect the pond’s water volume and in which parts of the pond their accumulation is concentrated. This study will contribute to the literature by using an ACDP device for the bathymetry measurement process which is rare in the literature. In this approach, the pond's underwater topography of the pond contributed to the sustainable management of the pond by producing Digital Elevation Models (DEM), which is a sensitive indicator of climate change and man-made effects.

Thanks

The authors would also like to thank the anonymous reviewers and editors for commenting on this paper.

References

  • 1. Loucks, D., & Gladwell, J. (1999). Sustainability criteria for water resource systems. United Kingdom: Cambridge University Press.
  • 2. Michalec B. (2021). Seasonal variations in nickel contamination of water and sediments of small dam reservoirs in southern Poland. Carpathian Journal of Earth and Environmental Sciences, 16(2), 349–360. https://doi.org/10.26471/cjees/2021/016/180
  • 3. Wang, J., Zhu, L., Daut, G., Ju, J., Lin, X., Wang, Y., & Zhen, X. (2009). Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology, 10(2), 149–158. https://doi.org/10.1007/S10201-009-0266-8
  • 4. Lachhab, A., Booterbaugh, A., & Beren, M. (2015). Bathymetry and Sediment Accumulation of Walker Lake, PA Using Two GPR Antennas in a New Integrated Method. Journal of Environmental and Engineering Geophysics, 20(3), 245–255. https://doi.org/10.2113/JEEG20.3.245
  • 5. Ławniczak, A., Choiński, A., & Kurzyca, I. (2011). Dynamics of lake morphometry and bathymetry in various hydrological conditions. Polish Journal of Environmental Studies, 20(4), 931–940.
  • 6. Mohamed, H., Negm, A., Zahran, M., & Saavedra, O. (2016). Bathymetry determination from high resolution satellite imagery using ensemble learning algorithms in Shallow Lakes: Case study El-Burullus Lake. International Journal of Environmental Science and Development, 7(4), 295–301. https://doi.org/10.7763/IJESD.2016.V7.787
  • 7. Dekker, A. G., Phinn, S. R., Anstee, J., Bissett, P., Brando, V. E., Casey, B., … Roelfsema, C. (2011). Intercomparison of shallow water bathymetry, hydro‐optics, and benthos mapping techniques in Australian and Caribbean coastal environments. Limnology and Oceanography: Methods, 9(SEP), 396–425. https://doi.org/10.4319/lom.2011.9.396
  • 8. Moses, S. A., Janaki, L., Joseph, S., Justus, J., & Vimala, S. R. (2011). Influence of lake morphology on water quality. Environmental Monitoring and Assessment, 182(1–4), 443–454. https://doi.org/10.1007/S10661-011-1888-Y
  • 9. Opeyemi, A. J., Rasheed, A. B., Margret, O. O., & Olusola, A. R. (2016). Baseline physico-chemical and bathymetry assessment of Mahin Lake, Southwestern, Nigeria, 7(4), 33–41. https://doi.org/10.5897/JOMS2016.0133
  • 10. Rotaru, E., Le Coz, J., Drobot, R., Adler, M. J., Dramais, G., Rotaru, E., Adler, M.-J. (2006). ADcp measurements of suspended sediment fluxes in Banat rivers, Romania. Balwois .
  • 11. Honegger, D. A., Haller, M. C., & Holman, R. A. (2020). High-resolution bathymetry estimates via X-band marine radar: 2. Effects of currents at tidal inlets. Coastal Engineering, 156. https://doi.org/10.1016/J.COASTALENG.2019.103626
  • 12. Mejia-Olivares, C. J., Haigh, I. D., Lewis, M. J., & Neill, S. P. (2020). Sensitivity assessment of bathymetry and choice of tidal constituents on tidal-stream energy resource characterisation in the Gulf of California, Mexico. Applied Ocean Research, 102. https://doi.org/10.1016/J.APOR.2020.102281
  • 13. Gao, J. (2009). Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Progress in Physical Geography, 33(1), 103–116. https://doi.org/10.1177/0309133309105657
  • 14. Villalpando, F., Tuxpan, J., Ramos-Leal, J. A., & Carranco-Lozada, S. (2020). New Framework Based on Fusion Information from Multiple Landslide Data Sources and 3D Visualization. Journal of Earth Science, 31(1), 159–168. https://doi.org/10.1007/S12583-019-1243-8
  • 15. Makineci, H. B. (2016). İnsansız hava araçları lidar etkileşimi. Geomatik, 1(1), 19–23.
  • 16. Nhamo, L., Magidi, J., & Nyamugama, A. (2020). Prospects of improving agricultural and water productivity through unmanned aerial vehicles. Agriculture.
  • 17. Taddia, Y., Russo, P., Lovo, S., & Pellegrinelli, A. (2020). Multispectral UAV monitoring of submerged seaweed in shallow water. Applied Geomatics, 12, 19–34. https://doi.org/10.1007/S12518-019-00270-X
  • 18. Cook, K. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195–208.
  • 19. Koparan, C., Koc, A., & Privette, C. (2018). In situ water quality measurements using an unmanned aerial vehicle (UAV) system. Water, 10(3), 264.
  • 20. Kim, J., Baek, D., & Seo, I. (2019). Retrieving shallow stream bathymetry from UAV-assisted RGB imagery using a geospatial regression method. Geomorphology, 341, 102–114.
  • 21. Amlashi, H. H., Samadzadegan, F., Dadrass Javan, F., & Savadkouhi, M. (2020). Comparing the accuracy of GNSS positioning variants for uav based 3D map generation. isprs-archives.copernicus.orgH Haddadi Amlashi, F SamadzadegaThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 443–449. https://doi.org/10.5194/isprs-archives-XLIII-B1-2020-443-2020
  • 22. Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • 23. Ahmet, Ş., & Yakar, M. (2018). Photogrammetric modelling of hasbey dar’ülhuffaz (masjid) using an unmanned aerial vehicle. Journal of Engineering and Geosciences, 3(1), 6–011. https://doi.org/10.26833/ijeg.328919
  • 24. Lin, H., Chen, M., Lu, G., Zhu, Q., Gong, J., You, X., … Hu, M. (2013). Virtual Geographic Environments (VGEs): A New Generation of Geographic Analysis Tool. Earth-Science Reviews, 126, 74–84. https://doi.org/10.1016/J.EARSCIREV.2013.08.001
  • 25. Lin, H., Chen, M., & Lu, G. (2013). Virtual geographic environment: a workspace for computer-aided geographic experiments. Annals of the Association of American Geographers, 103(3), 465–482. https://doi.org/10.1080/00045608.2012.689234
  • 26. Mekni, M. (2012). Abstraction of informed virtual geographic environments. Geo-spatial Information Science, 15(1), 27–36. https://doi.org/10.1080/10095020.2012.708150
  • 27. Chen, M., Lin, H., Kolditz, O., & Chen, C. (2015). Developing dynamic virtual geographic environments (VGEs) for geographic research. Environmental Earth Sciences, 74(10), 6975–6980. https://doi.org/10.1007/S12665-015-4761-4
  • 28. Lin, H., Batty, M., Jørgensen, S., Bojie, F., Milan, K., Voinov, A., … Gong, J. (2015). Virtual environments begin to embrace process‐based geographic analysis. Transactions in GIS, 19(4), 493–498. https://doi.org/10.1111/tgis.12167
  • 29. Lü, G., Yu, Z., Zhou, L., Wu, M., Sheng, Y., & Yuan, L. (2015). Data environment construction for virtual geographic environment. Environmental Earth Sciences, 74(10), 7003–7013. https://doi.org/10.1007/s12665-015-4736-5
  • 30. Yan, C., Rink, K., Bilke, L., Nixdorf, E., Yue, T., & Kolditz, O. (2019). Virtual Geographical Environment-Based Environmental Information System for Poyang Lake Basin, 293–308. https://doi.org/10.1007/978-3-319-97725-6_18
  • 31. Chen, M., Lin, H., & Lu, G. (2017). Virtual Geographic Environments. International Encyclopedia of Geography, 1–11. https://doi.org/10.1002/9781118786352.WBIEG0448
  • 32. Zhou, T., Long, Y., Zhang, L., & Tao, F. (2010). Research on geographic environment and area evolution of Lake Ulungur region based on 3S technology. 2010 International Conference on Multimedia Technology, ICMT 2010. https://doi.org/10.1109/ICMULT.2010.5631208
  • 33. Câmara, A. S., Neves, J. N., Muchaxo, J., Fernandes, J. P., Sousa, I., Nobre, E., … Rodrigues, A. C. (1998). Virtual Environments and Water Quality Management. Journal of Infrastructure Systems, 4(1), 28–36. https://doi.org/10.1061/(ASCE)1076-0342(1998)4:1(28)
  • 34. Rink, K., Chen, C., Bilke, L., Liao, Z., Rinke, K., Frassl, M., Kolditz, O. (2018). Virtual geographic environments for water pollution control. International Journal of Digital Earth, 11(4), 397–407. https://doi.org/10.1080/17538947.2016.1265016
  • 35. Liang, J., Gong, J., GIS, Y., & Li, Y. (2015). Realistic rendering for physically based shallow water simulation in Virtual Geographic Environments (VGEs). Taylor & Francis, 21(4), 301–312. https://doi.org/10.1080/19475683.2015.1050064
  • 36. Yan, C., Rink, K., Bilke, L., Nixdorf, E., Yue, T., & Kolditz, O. (2019). Virtual Geographical Environment-Based Environmental Information System for Poyang Lake Basin. Chinese Water Systems, 3, 293–308. https://doi.org/10.1007/978-3-319-97725-6_18
  • 37. Li, W., Zhu, J., Fu, L., Zhu, Q., Guo, Y., & Gong, Y. (2021). A rapid 3D reproduction system of dam-break floods constrained by post-disaster information. Environmental Modelling & Software, (104994), 139.
  • 38. Alvarez, L., Moreno, H., & Segales, A. (2018). Merging unmanned aerial systems (UAS) imagery and echo soundings with an adaptive sampling technique for bathymetric surveys. Remote Sensing, 10(9).
  • 39. Fernández-Lozano, J., & Andrés-Bercianos, R. (2020). On the origin of a remote mountainous natural reserve: Insights from a topo-bathymetry reconstruction of the glacial lake of Truchillas (NW Spain). Quaternary International, 566–567, 16–23. https://doi.org/10.1016/J.QUAINT.2020.02.004
  • 40. Saer, A. El, Stentoumis, C., Kalisperakis, I., & Nomikou, P. (2020). Developing a strategy for precise 3D modelling of large-scale scenes for VR. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 567–574. https://doi.org/10.5194/isprs-archives-XLIII-B4-2020-567-2020
  • 41. Kapetanović, N., Kordić, B., & Vasilijević, A. (2020). Autonomous Vehicles Mapping Plitvice Lakes National Park, Croatia. Remote Sensing, 12(22).
  • 42. Kaya, M. (2013). Interaction of Water Quality with Basin Components in Small Water Bodies, 109.
  • 43. Ulvi, A. (2018). Analysis of the utility of the unmanned aerial vehicle (UAV) in volume calculation by using photogrammetric techniques. International Journal of Engineering and Geosciences, 3(2), 43-49. https://doi.org/10.26833/ijeg.377080
  • 44. Akar, A. (2017). Evaluation of accuracy of DEMs obtained from uav-point clouds for different topographical areas. International Journal of Engineering and Geosciences, 2(3), 110-117. https://doi.org/10.26833/ijeg.329717
  • 45. Kanun, E., Alptekin, A., & Yakar, M. (2021). Cultural heritage modelling using UAV photogrammetric methods: a case study of Kanlıdivane archeological site. Advanced UAV, 1(1), 24-33.
  • 46. Hamal, S. N. G. (2022). Accuracy of digital maps produced from UAV images in rural areas. Advanced UAV, 2(1), 29-34.
  • 47. Sontek. (2001). Sontek/YSI ADCP Acoustic Doppler Profiler Technical Documentation.
  • 48. Kim, J., Kim, D., Son, G., & Kim, S. (2015). Accuracy Analysis of Velocity and Water Depth Measurement in the Straight Channel using ADCP. Journal of the Korean Water Resources Association, 48(5), 367–377. https://doi.org/10.3741/JKWRA.2015.48.5.367
There are 48 citations in total.

Details

Primary Language English
Subjects Geospatial Information Systems and Geospatial Data Modelling, Photogrammetry and Remote Sensing
Journal Section Research Article
Authors

Zehra Yiğit Avdan 0000-0001-7445-3393

Ece Tuğba Çetinkaya 0000-0002-2320-073X

Serdar Göncü 0000-0002-6296-3297

Resul Çömert 0000-0003-0125-4646

Uğur Avdan 0000-0001-7873-9874

Early Pub Date November 17, 2024
Publication Date October 31, 2024
Submission Date April 28, 2024
Acceptance Date September 17, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Yiğit Avdan, Z., Çetinkaya, E. T., Göncü, S., Çömert, R., et al. (2024). Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey. International Journal of Engineering and Geosciences, 9(3), 406-417. https://doi.org/10.26833/ijeg.1475023
AMA Yiğit Avdan Z, Çetinkaya ET, Göncü S, Çömert R, Avdan U. Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey. IJEG. October 2024;9(3):406-417. doi:10.26833/ijeg.1475023
Chicago Yiğit Avdan, Zehra, Ece Tuğba Çetinkaya, Serdar Göncü, Resul Çömert, and Uğur Avdan. “Virtual Geographical Environment (VGEs) by Incorporation of Unmanned Aerial Vehicle (UAV) Imagery and Acoustic Profile for Pond Borabey”. International Journal of Engineering and Geosciences 9, no. 3 (October 2024): 406-17. https://doi.org/10.26833/ijeg.1475023.
EndNote Yiğit Avdan Z, Çetinkaya ET, Göncü S, Çömert R, Avdan U (October 1, 2024) Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey. International Journal of Engineering and Geosciences 9 3 406–417.
IEEE Z. Yiğit Avdan, E. T. Çetinkaya, S. Göncü, R. Çömert, and U. Avdan, “Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey”, IJEG, vol. 9, no. 3, pp. 406–417, 2024, doi: 10.26833/ijeg.1475023.
ISNAD Yiğit Avdan, Zehra et al. “Virtual Geographical Environment (VGEs) by Incorporation of Unmanned Aerial Vehicle (UAV) Imagery and Acoustic Profile for Pond Borabey”. International Journal of Engineering and Geosciences 9/3 (October 2024), 406-417. https://doi.org/10.26833/ijeg.1475023.
JAMA Yiğit Avdan Z, Çetinkaya ET, Göncü S, Çömert R, Avdan U. Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey. IJEG. 2024;9:406–417.
MLA Yiğit Avdan, Zehra et al. “Virtual Geographical Environment (VGEs) by Incorporation of Unmanned Aerial Vehicle (UAV) Imagery and Acoustic Profile for Pond Borabey”. International Journal of Engineering and Geosciences, vol. 9, no. 3, 2024, pp. 406-17, doi:10.26833/ijeg.1475023.
Vancouver Yiğit Avdan Z, Çetinkaya ET, Göncü S, Çömert R, Avdan U. Virtual geographical environment (VGEs) by incorporation of unmanned aerial vehicle (UAV) imagery and acoustic profile for Pond Borabey. IJEG. 2024;9(3):406-17.