Research Article
BibTex RIS Cite
Year 2023, , 1 - 16, 26.12.2023
https://doi.org/10.30897/ijegeo.1323768

Abstract

References

  • Abellán A, Vilaplana JM, Martínez J (2006). Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Int J Rock Mech Min Sci Geomech 88:136–148. DOI:10.1016/j.enggeo.2006.09.012
  • Agliardi F, Crosta GB (2003). High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471.
  • Ağca, M., Kaya, E., Yılmaz, HM (2020a). Yersel ve fotogrametrik yöntemler ile kaya bloklarının hacimlerinin hesaplanması: Selime örneği, Aksaray. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(3), 465-471.
  • Ağca, M., Gültekin, N.Y., Kaya, E (2020b). İnsansız hava aracından elde edilen veriler ile kaya düşme potansiyelinin değerlendirilmesi: Adam Kayalar örneği, Mersin. Geomatik, 5(2), 134-145.
  • Ajayi OG, Salubi AA, Angbas AF, Odigure MG (2017). Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. Int. J. Remote Sens. 38:3113–3134.
  • Akın M, Dinçer İ, Ok A.Ö, et al (2021). Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing. Eng Geol 283:106001. DOI:10.1016/j.enggeo.2021.106001.
  • Akın M, Dinçer I, Orhan A, et al (2019a). Kaya Tutma Hendek Performansının 3-Boyutlu Kaya Düşme Analizleriyle Değerlendirilmesi: Akköy (Ürgüp) Örneği. Jeol Mühendisliği Derg 211–231. DOI:10.24232/jmd.655005.
  • Akın M, Dinçer İ, Orhan A, et al (2019b). Evaluation of the Performance of a Rockfall Ditch by 3-Dimensional Rockfall Analyses: Akköy (Ürgüp) Case. Jeol Muhendisligi Derg 43:211–232. DOI:10.24232/jmd.655005.
  • Akturk E, Altunel AO (2019). Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 136:382–386. DOI:10.1016/j.measurement.2018.12.101
  • Alejano LR, García-Cortés S, García-Bastante F, Martínez-Alegría R (2013). Study of a rockfall in a limy conglomerate canyon (Covarrubias, Burgos, N. Spain). Environ Earth Sci 70:2703–2717. DOI:10.1007/s12665-013-2327-x.
  • Altın TB, Altın BN (2011). Development and morphometry of drainage network in volcanic terrain, Central Anatolia, Turkey. Geomorphology 125:485–503. DOI:10.1016/j.geomorph.2010.09.023.
  • Ansari MK, Ahmad M, Singh R, Singh TN (2018). 2D and 3D rockfall hazard analysis and protection measures for Saptashrungi Gad Temple, Vani, Nashik, Maharashtra – A case study. J Geol Soc India 91:47–56. DOI:10.1007/s12594-018-0819-8
  • Armesto J, Ordóñez C, Alejano L, Arias P (2009). Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology 106:271–277. DOI:10.1016/j.geomorph.2008.11.005
  • Aydın A, Eker R (2017). Kaya yuvarlanmalarından etkilenen orman alanlarının belirlenmesi: İnebolu örneği. İstanbul Üniversitesi Orman Fakültesi Derg 67:136–149. DOI:10.17099/jffiu.28171
  • Azzoni A, La Barbera G, Zaninetti A (1995). Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci 32:709–724. DOI:10.1016/0148-9062(95)00018-C.
  • Baillifard F, Jaboyedoff M, Sartori M (2010). Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:435–442. DOI:10.5194/nhess-3-435-2003.
  • Bartelt P, Bieler C, Bühler Y, et al (2016a). RAMMS::ROCKFALL User Manual v1.6. 102 Bartelt P, Gerber W, Christen M, Bühler Y (2016b) Modeling rockfall trajectories with non-smooth contact/impact mechanics. Içinde: 13th Congress Interpraevent 2016. ss 203–211
  • Berger F, Rey F (2004). Mountain protection forests against natural hazards and risks: New french developments by integrating forests in risk zoning. Nat Hazards 33:395–404. DOI:10.1023/B:NHAZ.0000048468.67886.e5
  • Boccardo P, Chiabrando F, Dutto F, et al (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors 15:15717–15737. DOI:10.3390/s150715717
  • Bonneau DA, Hutchinson DJ, Difrancesco P, et al (2018) 3-Dimensional Rockfall Shape Back-Analysis : Methods and Implications. 1–35. DOI:DOI:10.5194/nhess-2018-366
  • Büyüksaraç A, Jordanova D, Ateş A, Karloukovski V (2005) Kapadokya İgnimbiritleri ve Volkanitlerinde Paleomanyetik Çalışma-Manyetik Anomalilerin Yorumuna Bir Yaklaşım. İstanbul Üniv Müh Fak Yerbilim Derg 18:199–218
  • Byrne K (2018) Digital Morphometry Applied to Geo-Hazard Risk Assessment: A Case Study from Germany. Technische Universitat Dresden, Faculty of Environmental Sciences, Institute for Cartography, Master of Science
  • Caviezel A, Ringenbach A, Demmel SE, et al (2021) The relevance of rock shape over mass—implications for rockfall hazard assessments. Nat Commun 12:1–9. DOI:10.1038/s41467-021-25794-y
  • Chiba T, Kaneta S, Ohashi M (2019) Digital Terrain Representation Methods and Red Relief Image Map, A New Visualization Approach. Proc ICA 2:1–3. DOI:10.5194/ica-proc-2-17-2019
  • Chiba T, Kaneta S, Suzuki Y (2008) Red relief image map: New visualization method for three dimensional data. Int Arch Photogramm Remote Sens Spat Inf Sci 37:1071–1076. DOI:DOI:10.11212/jjca1963.45.27
  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J Photogramm Remote Sens 92:79–97. DOI:10.1016/j.isprsjprs.2014.02.013
  • Coveney S, Roberts K (2017) Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. Int J Remote Sens 38:3159–3180. DOI:10.1080/01431161.2017.1292074
  • Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422. DOI:10.5194/nhess-3-407-2003
  • Dewez TJB, Girardeau-Montaut D, Allanic C, Rohmer J (2016) Facets : A cloudcompare plugin to extract geological planes from unstructured 3d point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 41:799–804
  • Dinçer İ, Orhan A, Frattini P, Crosta GB (2016) Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Nat Hazards 82:1075–1098. DOI:10.1007/s11069-016-2234-z
  • Dorren L, Kühne R (2016) Comparing the 3D rockfall simulation models Rockyfor3D and RAMMS :: ROCKFALL at a case study site in Switzerland. INTERPRAEVENT 2016 – Ext. Abstr. 2–3
  • Dorren LKA (2003) A review of rockfall mechanics and modelling approaches. Prog Phys Geogr 27:69–87. DOI:10.1191/0309133303pp359ra
  • Dorren LKA, Maier B, Putters US, Seijmonsbergen AC (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps. Geomorphology 57:151–167. DOI:10.1016/S0169-555X(03)00100-4
  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64. DOI:10.1016/S0169-555X(03)00045-X
  • Fanos AM, Pradhan B (2018) Laser Scanning Systems and Techniques in Rockfall Source Identification and Risk Assessment: A Critical Review. Earth Syst Environ 2:163–182. DOI:10.1007/s41748-018-0046-x
  • Farvacque M, Lopez-Saez J, Corona C, et al (2019) Quantitative risk assessment in a rockfall-prone area: the case study of the Crolles municipality (Massif de la Chartreuse, French Alps). Géomorphologie Reli Process Environ 25:7–19. DOI:10.4000/geomorphologie.12778
  • Feng L, Intrieri E, Pazzi V, et al (2021) A framework for temporal and spatial rockfall early warning using micro-seismic monitoring. Landslides 18:1059–1070. DOI:10.1007/s10346-020-01534-z
  • Feng QH, Röshoff K (2004) In-situ mapping and documentation of rock faces using a full-coverage 3d laser scanning technique. Int J Rock Mech Min Sci 41:1–6. DOI:10.1016/j.ijrmms.2004.03.032
  • Francioni M, Antonaci F, Sciarra N, et al (2020) Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations. Remote Sens 12:2053. DOI:10.3390/rs12122053
  • Frattini P, Crosta GB, Agliardi F (2012) Rockfall characterization and modeling. Içinde: Clague JJ, Stead D (ed) Landslides. Cambridge University Press, Cambridge, ss 267–281
  • Frattini P, Crosta GB, Agliardi F, Imposimato S (2013) Landslide Science and Practice. Içinde: Margottini C, Canuti P, Sassa K (ed) Landslide Science and Practice; Challenging Calibration in 3D Rockfall Modelling. Springer Berlin Heidelberg, Berlin, Heidelberg, ss 169–175
  • Geniş M, Sakız U, Çolak Aydıner B (2017) A stability assessment of the rockfall problem around the Gökgöl Tunnel (Zonguldak, Turkey). Bull Eng Geol Environ 76:1237–1248. DOI:10.1007/s10064-016-0907-1
  • Giordan D, Baldo M, Guzzetti F, et al (2019) Brief communication: Remotely piloted aircraft systems for rapid emergency response: Road exposure to rockfall in Villanova di Accumoli (central Italy). Nat Hazards Earth Syst Sci 19:325–335. DOI:10.5194/nhess-19-325-2019
  • Giordan D, Manconi A, Facello A, et al (2015) Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario. Nat Hazards Earth Syst Sci 15:163–169. DOI:10.5194/nhess-15-163-2015
  • Gomez C, Purdie H (2016) UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring – A Review. Geoenvironmental Disasters 3:. DOI:10.1186/s40677-016-0060-y
  • Graber A, Santi P (2022) Power law models for rockfall frequency-magnitude distributions: review and identification of factors that influence the scaling exponent. Geomorphology 418:108463. DOI:10.1016/j.geomorph.2022.108463
  • Gül M, Özbek A, Karacan E (2016) Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla—SW Turkey. Environ Earth Sci 75:1310. DOI:10.1007/s12665-016-6113-4
  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: A computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093. DOI:10.1016/S0098-3004(02)00025-0
  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. DOI:10.1007/s10346-013-0436-y
  • Jaboyedoff M, Labiouse V (2011) Technical note: Preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819–828. DOI:10.5194/nhess-11-819-2011
  • Kayabaşı A (2018) The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arab J Geosci 11:800. DOI:10.1007/s12517-018-4175-1
  • Kazancı N (2020) Kapadokya’nın arazi yapısı ve sınırları, Türkiye. Türkiye Jeol Bülteni / Geol Bull Turkey 1–8. DOI:10.25288/tjb.695327
  • Keskin İ, Polat A (2022) Kinematic Analysis and Rockfall Assessment of Rock Slope at the UNESCO World Heritage city (Safranbolu/Turkey). Iran J Sci Technol Trans Civ Eng 46:367–384. DOI:10.1007/s40996-021-00803-8
  • Kim DH, Gratchev I, Berends J, Balasubramaniam A (2015) Calibration of restitution coefficients using rockfall simulations based on 3D photogrammetry model: a case study. Nat Hazards 78:1931–1946. DOI:10.1007/s11069-015-1811-x
  • Koukouvelas I, Litoseliti A, Nikolakopoulos K, Zygouri V (2015) Earthquake triggered rock falls and their role in the development of a rock slope: The case of Skolis Mountain, Greece. Eng Geol 191:71–85. DOI:10.1016/j.enggeo.2015.03.011
  • Koukouvelas I, Nikolakopoulos KG, Zygouri V, Kyriou A (2020) Post-seismic monitoring of cliff mass wasting using an unmanned aerial vehicle and field data at Egremni, Lefkada Island, Greece. Geomorphology 367:107306. DOI:10.1016/j.geomorph.2020.107306
  • Lan H, Derek Martin C, Lim CH (2007) RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279. DOI:10.1016/j.cageo.2006.05.013
  • Leine RI, Schweizer A, Christen M, et al (2014) Simulation of rockfall trajectories with consideration of rock shape
  • Li L, Lan H (2015) Probabilistic modeling of rockfall trajectories: a review. Bull Eng Geol Environ 74:1163–1176. DOI:10.1007/s10064-015-0718-9
  • Liu G, Li J, Wang Z (2021) Experimental Verifications and Applications of 3D-DDA in Movement Characteristics and Disaster Processes of Rockfalls. Rock Mech Rock Eng. DOI:10.1007/s00603-021-02394-2
  • Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9:1643–1653. DOI:10.5194/nhess-9-1643-2009
  • Lu G, Caviezel A, Christen M, et al (2019) Modelling rockfall impact with scarring in compactable soils. Landslides 16:2353–2367. DOI:10.1007/s10346-019-01238-z
  • Manconi A, Ziegler M, Blöchliger T, Wolter A (2019) Technical note: optimization of unmanned aerial vehicles flight planning in steep terrains. Int J Remote Sens 40:2483–2492. DOI:10.1080/01431161.2019.1573334
  • Mary Vick L, Zimmer V, White C, et al (2019) Significance of substrate soil moisture content for rockfall hazard assessment. Nat Hazards Earth Syst Sci 19:1105–1117. DOI:10.5194/nhess-19-1105-2019
  • Matasci B, Jaboyedoff M, Loye A, et al (2015) Impacts of fracturing patterns on the rockfall susceptibility and erosion rate of stratified limestone. Geomorphology 241:83–97. DOI:10.1016/j.geomorph.2015.03.037
  • Michoud C, Derron M, Horton P, et al (2012) Rockfall hazard and risk assessments along roads at a regional scale : example in Swiss Alps. 615–629. DOI:10.5194/nhess-12-615-2012
  • Monsalve JJ, Pfreundschuh A, Soni A, Ripepi N (2021) Automated Discontinuity Extraction Software Versus Manual Virtual Discontinuity Mapping: Performance Evaluation in Rock Mass Characterization and Rockfall Hazard Identification. Mining, Metall Explor 38:1383–1394. DOI:10.1007/s42461-021-00416-9
  • Nasery MM, Cosgun SI, Temel BA (2022) Multi-Scenario Analysis of Rockfall Hazard for a Historical Vaulted Masonry Building in Sumela Monastery. Int J Archit Herit 1–29. DOI:10.1080/15583058.2022.2091967
  • Noël F, Jaboyedoff M, Caviezel A, et al (2022) Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models. Earth Surf Dyn 10:1141–1164. DOI:10.5194/esurf-10-1141-2022
  • Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg 17-27 (In Turkish)
  • Pérez-Rey I, Riquelme A, González-deSantos LM, et al (2019) A multi-approach rockfall hazard assessment on a weathered granite natural rock slope. Landslides 16:2005–2015. DOI:10.1007/s10346-019-01208-5
  • Riquelme A, Cano M, Tomás R, Abellán A (2017) Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Eng 191:838–845. DOI:10.1016/j.proeng.2017.05.251
  • Riquelme A, Tomás R, Cano M, et al (2018) Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech Rock Eng 51:3005–3028. DOI:10.1007/s00603-018-1519-9
  • Riquelme AJ, Abellán A, Tomás R, Jaboyedoff M (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52. DOI:10.1016/j.cageo.2014.03.014
  • Ritchie AM (1963) Evaluation of Rockfall and Its Control. Highw Res Rec 17, Stab Rock Slopes, Highw Res Board, Natl Res Counc Washington, DC 13–28
  • Rodriguez J, Macciotta R, Hendry MT, et al (2020) UAVs for monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms—a case study. Landslides 17:2027–2040. DOI:10.1007/s10346-020-01416-4
  • Sarro R, Carlos J, Mar R (2018) Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration : Application at a Cultural Heritage Site. Remote Sens. DOI:10.3390/rs10121923
  • Sazid M (2019) Analysis of rockfall hazards along NH-15: A case study of Al-Hada road. Int J Geo-Engineering 10:1–13. DOI:10.1186/s40703-019-0097-3
  • Schilirò L, Robiati C, Smeraglia L, et al (2022) An integrated approach for the reconstruction of rockfall scenarios from UAV and satellite-based data in the Sorrento Peninsula (southern Italy). Eng Geol 308:106795. DOI:10.1016/j.enggeo.2022.106795
  • Schober A, Bannwart C, Keuschnig M (2012) Rockfall modelling in high alpine terrain - validation and limitations / Steinschlagsimulation in hochalpinem Raum - Validierung und Limitationen. Geomech Tunn 5:368–378. DOI:10.1002/geot.201200025
  • Sellmeier B, Thuro K (2017) Comparison of two 3D rockfall codes on behalf of a case study in the Bavarian Alps. Geomech und Tunnelbau 10:15–23. DOI:10.1002/geot.201600071
  • Singh A, Pal S, Kanungo DP (2018) Site-Specific Vulnerability Assessment of Buildings Exposed to Rockfalls. Renew Energy its Innov Technol 1–11. DOI:10.1007/978-981-13-2116-0_1
  • Taga H, Zorlu K (2016) Assessment of rockfall hazard on the steep-high slopes: Ermenek (Karaman, Turkey). Nat Hazards Earth Syst Sci Discuss 1–32. DOI:10.5194/nhess-2015-337
  • Tamminga A, Hugenholtz C, Eaton B, Lapointe M (2015) Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res Appl 31:379–391. DOI:10.1002/rra.2743
  • Tanoli JI, Chen N, Ullah I, et al (2022) Modified “Rockfall Hazard Rating System for Pakistan (RHRSP)”: An Application for Hazard and Risk Assessment along the Karakoram Highway, Northwest Pakistan. Appl Sci 12:3778. DOI:10.3390/app12083778
  • Topal T, Akın MK, Akın M (2012) Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Nat Hazards 62:255–274. DOI:10.1007/s11069-011-9995-1
  • Török Á, Barsi Á, Bögöly G, et al (2017) Slope stability and rock fall hazard assessment of volcanic tuffs using RPAS and TLS with 2D FEM slope modelling. Nat Hazards Earth Syst Sci Discuss 1–30. DOI:10.5194/nhess-2017-56
  • Torsello G, Vallero G, Castelli M (2021) The role of block shape and slenderness in the preliminary estimation of rockfall propagation. IOP Conf Ser Earth Environ Sci 833:012177. DOI:10.1088/1755-1315/833/1/012177
  • Utlu M, Öztürk MZ, Şimşek M (2021) Yüksek Çözünürlüklü Sayısal Yüzey Modellerine Uygulanan Üç Boyutlu Analizler ile Kaya Düşmelerine Ait Sayısal Risk Değerlendirmesi: Ünlüyaka Köyü (Niğde, Türkiye). Içinde: Döker MF, Akköprü E (ed) COĞRAFYA ARAŞTIRMALARINDA COĞRAFİ BİLGİ SİSTEMLERİ UYGULAMALARI II, I. PEGEM AKADEMi, Ankara-Turkey, ss 51–69
  • Utlu M, Öztürk MZ, Şimşek M (2020a) Rockfall analysis based on UAV technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey). Int J Environ Geoinformatics 7:239–251. DOI:10.30897/ijegeo
  • Utlu M, Öztürk MZ, Şimşek M (2020b) Emli Vadisi’ndeki (Aladağlar) Talus Depolarının Kantitatif Analizlere Göre İncelenmesi. Içinde: Birinci S, Kıvanç Kaymaz Ç, Kızılkan Y (ed) COĞRAFİ PERSPEKTİFLE DAĞ VE DAĞLIK ALANLAR (Sürdürülebilirlik-Yönetim-Örnek Alan İncelemeleri), I. Kriter Yayınevi, İstanbul-Turkey, ss 51–72
  • Valkaniotis S, Papathanassiou G, Ganas A (2018) Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Eng. Geol. 245:141–15
  • Vo DT (2015) RAMMS : Rockfall versus Rockyfor3D in rockfall trajectory simulations at the Community of Vik , Norway Dam Thanh Vo RAMMS :: Rockfall versus Rockyfor3D in rockfall trajectory simulations at the Community of Vik , Norway. University of Oslo, Faculty of Mathematics and Natural Sciences, Master Thesis in Geosciences
  • Volkwein A, Schellenberg K, Labiouse V, et al (2011) Rockfall characterisation and structural protection - A review. Nat Hazards Earth Syst Sci 11:2617–2651. DOI:10.5194/nhess-11-2617-2011
  • Wang M, Zhou J, Chen J, et al (2023) Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. J Rock Mech Geotech Eng. DOI:10.1016/j.jrmge.2022.12.015
  • Wang W, Zhao W, Chai B, et al (2022) Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry. Comput Geosci 166:105191. DOI:10.1016/j.cageo.2022.105191
  • Wieczorek GF, Morrissey MM, Iovine G, Godt JW (1998) Rock-fall hazards in the Yosemite Valley, California. U S Geol Surv Open-file Rep 98–467:
  • Xu W, Zhang Y, Li X, et al (2020) Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China. Eng Geol 269:105553. DOI:10.1016/j.enggeo.2020.105553
  • Yan J, Chen J, Tan C, et al (2023) Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses. Eng Geol 313:106993. DOI:10.1016/j.enggeo.2023.106993
  • Yin Y, Li B, Gao Y, et al (2023) Geostructures, dynamics and risk mitigation of high-altitude and long-runout rockslides. J Rock Mech Geotech Eng 15:66–101. DOI:10.1016/j.jrmge.2022.11.001
  • Youssef AM, Pradhan B, Al-Kathery M, et al (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation. J African Earth Sci 101:309–321. DOI:10.1016/j.jafrearsci.2014.09.021
  • Žabota B, Mikoš M, Kobal M (2021) Rockfall Modelling in Forested Areas: The Role of Digital Terrain Model Grid Cell Size. Appl Sci 11:1461. DOI:10.3390/app11041461
  • Zhang L (2006) Rock discontinuities. In: Zhang L (eds) Engineering properties of rocks, 4th edn. Elsevier, A. Içinde: Zhang L (ed) Elsevier., 4th edn. Elsevier, Amsterdam, ss 226–230
  • Zhang W, Zhao X, Pan X, et al (2022) Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area, China. Eng Geol 308:106807. DOI:10.1016/j.enggeo.2022.106807
  • Zhang Y, Yue P, Zhang G, et al (2019) Augmented Reality Mapping of Rock Mass Discontinuities and Rockfall Susceptibility Based on Unmanned Aerial Vehicle Photogrammetry. Remote Sens 11:1311. DOI:10.3390/rs11111311

Evaluation of rockfall hazard based on UAV technology and 3D Rockfall Simulations

Year 2023, , 1 - 16, 26.12.2023
https://doi.org/10.30897/ijegeo.1323768

Abstract

Hacıabdullah village, where rockfall events occur frequently, is an important mountainous region located within the boundaries of Niğde province, which is one of the top provinces in Türkiye in terms of rockfall events and is located in the Central Anatolia Region. Despite the frequent occurrence of many rockfall events of varying sizes, no precautions are taken as a result of these events, leading to economic damages. Therefore, Hacıabdullah village, which poses a high danger and risk in terms of slope instability and rockfall potential, has been selected as the study area. The study aims to evaluate rockfall events occurring on steep slopes in Haciabullah village, based on the potential rock blocks that could fall, by modeling them according to their geometries. Within this scope, the potential 17 rock blocks that could fall have been identified in the field and modelled using RAMMS 3D rockfall software according to their geometric characteristics. In addition to the geometric characteristics of the rock blocks, their potential falling areas, velocities, jump heights, and kinetic energies will also be determined, the basis of the rockfall hazard analysis. For the 3D modeling of the study, UAV-DSM (3cm resolution), which represents the high-resolution surface of the topography, has been used as the main dataset. As a result of 3D rockfall modeling, the maximum kinetic energy, maximum velocity, and maximum jump height of the falling blocks reached 3476 kJ, 23.1 m/s, and 14.57 m, respectively. The result of the kinematic analysis showed a higher probability of toppling type in the whole study area. Rocks that do not move very far from the source area are; in other words and may significantly damage the roads. However, rolling blocks, in other words, blocks that can travel long distances from the source area, have the potential to cause great damage to the settlement areas, roads, and trees. According to the hazard map, blocks involve high and moderate levels of risk for settlement units.

References

  • Abellán A, Vilaplana JM, Martínez J (2006). Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Int J Rock Mech Min Sci Geomech 88:136–148. DOI:10.1016/j.enggeo.2006.09.012
  • Agliardi F, Crosta GB (2003). High resolution three-dimensional numerical modelling of rockfalls. Int J Rock Mech Min Sci 40:455–471.
  • Ağca, M., Kaya, E., Yılmaz, HM (2020a). Yersel ve fotogrametrik yöntemler ile kaya bloklarının hacimlerinin hesaplanması: Selime örneği, Aksaray. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 20(3), 465-471.
  • Ağca, M., Gültekin, N.Y., Kaya, E (2020b). İnsansız hava aracından elde edilen veriler ile kaya düşme potansiyelinin değerlendirilmesi: Adam Kayalar örneği, Mersin. Geomatik, 5(2), 134-145.
  • Ajayi OG, Salubi AA, Angbas AF, Odigure MG (2017). Generation of accurate digital elevation models from UAV acquired low percentage overlapping images. Int. J. Remote Sens. 38:3113–3134.
  • Akın M, Dinçer İ, Ok A.Ö, et al (2021). Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing. Eng Geol 283:106001. DOI:10.1016/j.enggeo.2021.106001.
  • Akın M, Dinçer I, Orhan A, et al (2019a). Kaya Tutma Hendek Performansının 3-Boyutlu Kaya Düşme Analizleriyle Değerlendirilmesi: Akköy (Ürgüp) Örneği. Jeol Mühendisliği Derg 211–231. DOI:10.24232/jmd.655005.
  • Akın M, Dinçer İ, Orhan A, et al (2019b). Evaluation of the Performance of a Rockfall Ditch by 3-Dimensional Rockfall Analyses: Akköy (Ürgüp) Case. Jeol Muhendisligi Derg 43:211–232. DOI:10.24232/jmd.655005.
  • Akturk E, Altunel AO (2019). Accuracy assessment of a low-cost UAV derived digital elevation model (DEM) in a highly broken and vegetated terrain. Measurement 136:382–386. DOI:10.1016/j.measurement.2018.12.101
  • Alejano LR, García-Cortés S, García-Bastante F, Martínez-Alegría R (2013). Study of a rockfall in a limy conglomerate canyon (Covarrubias, Burgos, N. Spain). Environ Earth Sci 70:2703–2717. DOI:10.1007/s12665-013-2327-x.
  • Altın TB, Altın BN (2011). Development and morphometry of drainage network in volcanic terrain, Central Anatolia, Turkey. Geomorphology 125:485–503. DOI:10.1016/j.geomorph.2010.09.023.
  • Ansari MK, Ahmad M, Singh R, Singh TN (2018). 2D and 3D rockfall hazard analysis and protection measures for Saptashrungi Gad Temple, Vani, Nashik, Maharashtra – A case study. J Geol Soc India 91:47–56. DOI:10.1007/s12594-018-0819-8
  • Armesto J, Ordóñez C, Alejano L, Arias P (2009). Terrestrial laser scanning used to determine the geometry of a granite boulder for stability analysis purposes. Geomorphology 106:271–277. DOI:10.1016/j.geomorph.2008.11.005
  • Aydın A, Eker R (2017). Kaya yuvarlanmalarından etkilenen orman alanlarının belirlenmesi: İnebolu örneği. İstanbul Üniversitesi Orman Fakültesi Derg 67:136–149. DOI:10.17099/jffiu.28171
  • Azzoni A, La Barbera G, Zaninetti A (1995). Analysis and prediction of rockfalls using a mathematical model. Int J Rock Mech Min Sci 32:709–724. DOI:10.1016/0148-9062(95)00018-C.
  • Baillifard F, Jaboyedoff M, Sartori M (2010). Rockfall hazard mapping along a mountainous road in Switzerland using a GIS-based parameter rating approach. Nat Hazards Earth Syst Sci 3:435–442. DOI:10.5194/nhess-3-435-2003.
  • Bartelt P, Bieler C, Bühler Y, et al (2016a). RAMMS::ROCKFALL User Manual v1.6. 102 Bartelt P, Gerber W, Christen M, Bühler Y (2016b) Modeling rockfall trajectories with non-smooth contact/impact mechanics. Içinde: 13th Congress Interpraevent 2016. ss 203–211
  • Berger F, Rey F (2004). Mountain protection forests against natural hazards and risks: New french developments by integrating forests in risk zoning. Nat Hazards 33:395–404. DOI:10.1023/B:NHAZ.0000048468.67886.e5
  • Boccardo P, Chiabrando F, Dutto F, et al (2015). UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications. Sensors 15:15717–15737. DOI:10.3390/s150715717
  • Bonneau DA, Hutchinson DJ, Difrancesco P, et al (2018) 3-Dimensional Rockfall Shape Back-Analysis : Methods and Implications. 1–35. DOI:DOI:10.5194/nhess-2018-366
  • Büyüksaraç A, Jordanova D, Ateş A, Karloukovski V (2005) Kapadokya İgnimbiritleri ve Volkanitlerinde Paleomanyetik Çalışma-Manyetik Anomalilerin Yorumuna Bir Yaklaşım. İstanbul Üniv Müh Fak Yerbilim Derg 18:199–218
  • Byrne K (2018) Digital Morphometry Applied to Geo-Hazard Risk Assessment: A Case Study from Germany. Technische Universitat Dresden, Faculty of Environmental Sciences, Institute for Cartography, Master of Science
  • Caviezel A, Ringenbach A, Demmel SE, et al (2021) The relevance of rock shape over mass—implications for rockfall hazard assessments. Nat Commun 12:1–9. DOI:10.1038/s41467-021-25794-y
  • Chiba T, Kaneta S, Ohashi M (2019) Digital Terrain Representation Methods and Red Relief Image Map, A New Visualization Approach. Proc ICA 2:1–3. DOI:10.5194/ica-proc-2-17-2019
  • Chiba T, Kaneta S, Suzuki Y (2008) Red relief image map: New visualization method for three dimensional data. Int Arch Photogramm Remote Sens Spat Inf Sci 37:1071–1076. DOI:DOI:10.11212/jjca1963.45.27
  • Colomina I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS J Photogramm Remote Sens 92:79–97. DOI:10.1016/j.isprsjprs.2014.02.013
  • Coveney S, Roberts K (2017) Lightweight UAV digital elevation models and orthoimagery for environmental applications: data accuracy evaluation and potential for river flood risk modelling. Int J Remote Sens 38:3159–3180. DOI:10.1080/01431161.2017.1292074
  • Crosta GB, Agliardi F (2003) A methodology for physically based rockfall hazard assessment. Nat Hazards Earth Syst Sci 3:407–422. DOI:10.5194/nhess-3-407-2003
  • Dewez TJB, Girardeau-Montaut D, Allanic C, Rohmer J (2016) Facets : A cloudcompare plugin to extract geological planes from unstructured 3d point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch. 41:799–804
  • Dinçer İ, Orhan A, Frattini P, Crosta GB (2016) Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Nat Hazards 82:1075–1098. DOI:10.1007/s11069-016-2234-z
  • Dorren L, Kühne R (2016) Comparing the 3D rockfall simulation models Rockyfor3D and RAMMS :: ROCKFALL at a case study site in Switzerland. INTERPRAEVENT 2016 – Ext. Abstr. 2–3
  • Dorren LKA (2003) A review of rockfall mechanics and modelling approaches. Prog Phys Geogr 27:69–87. DOI:10.1191/0309133303pp359ra
  • Dorren LKA, Maier B, Putters US, Seijmonsbergen AC (2004) Combining field and modelling techniques to assess rockfall dynamics on a protection forest hillslope in the European Alps. Geomorphology 57:151–167. DOI:10.1016/S0169-555X(03)00100-4
  • Dorren LKA, Seijmonsbergen AC (2003) Comparison of three GIS-based models for predicting rockfall runout zones at a regional scale. Geomorphology 56:49–64. DOI:10.1016/S0169-555X(03)00045-X
  • Fanos AM, Pradhan B (2018) Laser Scanning Systems and Techniques in Rockfall Source Identification and Risk Assessment: A Critical Review. Earth Syst Environ 2:163–182. DOI:10.1007/s41748-018-0046-x
  • Farvacque M, Lopez-Saez J, Corona C, et al (2019) Quantitative risk assessment in a rockfall-prone area: the case study of the Crolles municipality (Massif de la Chartreuse, French Alps). Géomorphologie Reli Process Environ 25:7–19. DOI:10.4000/geomorphologie.12778
  • Feng L, Intrieri E, Pazzi V, et al (2021) A framework for temporal and spatial rockfall early warning using micro-seismic monitoring. Landslides 18:1059–1070. DOI:10.1007/s10346-020-01534-z
  • Feng QH, Röshoff K (2004) In-situ mapping and documentation of rock faces using a full-coverage 3d laser scanning technique. Int J Rock Mech Min Sci 41:1–6. DOI:10.1016/j.ijrmms.2004.03.032
  • Francioni M, Antonaci F, Sciarra N, et al (2020) Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations. Remote Sens 12:2053. DOI:10.3390/rs12122053
  • Frattini P, Crosta GB, Agliardi F (2012) Rockfall characterization and modeling. Içinde: Clague JJ, Stead D (ed) Landslides. Cambridge University Press, Cambridge, ss 267–281
  • Frattini P, Crosta GB, Agliardi F, Imposimato S (2013) Landslide Science and Practice. Içinde: Margottini C, Canuti P, Sassa K (ed) Landslide Science and Practice; Challenging Calibration in 3D Rockfall Modelling. Springer Berlin Heidelberg, Berlin, Heidelberg, ss 169–175
  • Geniş M, Sakız U, Çolak Aydıner B (2017) A stability assessment of the rockfall problem around the Gökgöl Tunnel (Zonguldak, Turkey). Bull Eng Geol Environ 76:1237–1248. DOI:10.1007/s10064-016-0907-1
  • Giordan D, Baldo M, Guzzetti F, et al (2019) Brief communication: Remotely piloted aircraft systems for rapid emergency response: Road exposure to rockfall in Villanova di Accumoli (central Italy). Nat Hazards Earth Syst Sci 19:325–335. DOI:10.5194/nhess-19-325-2019
  • Giordan D, Manconi A, Facello A, et al (2015) Brief Communication: The use of an unmanned aerial vehicle in a rockfall emergency scenario. Nat Hazards Earth Syst Sci 15:163–169. DOI:10.5194/nhess-15-163-2015
  • Gomez C, Purdie H (2016) UAV- based Photogrammetry and Geocomputing for Hazards and Disaster Risk Monitoring – A Review. Geoenvironmental Disasters 3:. DOI:10.1186/s40677-016-0060-y
  • Graber A, Santi P (2022) Power law models for rockfall frequency-magnitude distributions: review and identification of factors that influence the scaling exponent. Geomorphology 418:108463. DOI:10.1016/j.geomorph.2022.108463
  • Gül M, Özbek A, Karacan E (2016) Rock fall hazard assessment in Asar Hill, ancient Mabolla City, Mugla—SW Turkey. Environ Earth Sci 75:1310. DOI:10.1007/s12665-016-6113-4
  • Guzzetti F, Crosta G, Detti R, Agliardi F (2002) STONE: A computer program for the three-dimensional simulation of rock-falls. Comput Geosci 28:1079–1093. DOI:10.1016/S0098-3004(02)00025-0
  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11:167–194. DOI:10.1007/s10346-013-0436-y
  • Jaboyedoff M, Labiouse V (2011) Technical note: Preliminary estimation of rockfall runout zones. Nat Hazards Earth Syst Sci 11:819–828. DOI:10.5194/nhess-11-819-2011
  • Kayabaşı A (2018) The assesment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arab J Geosci 11:800. DOI:10.1007/s12517-018-4175-1
  • Kazancı N (2020) Kapadokya’nın arazi yapısı ve sınırları, Türkiye. Türkiye Jeol Bülteni / Geol Bull Turkey 1–8. DOI:10.25288/tjb.695327
  • Keskin İ, Polat A (2022) Kinematic Analysis and Rockfall Assessment of Rock Slope at the UNESCO World Heritage city (Safranbolu/Turkey). Iran J Sci Technol Trans Civ Eng 46:367–384. DOI:10.1007/s40996-021-00803-8
  • Kim DH, Gratchev I, Berends J, Balasubramaniam A (2015) Calibration of restitution coefficients using rockfall simulations based on 3D photogrammetry model: a case study. Nat Hazards 78:1931–1946. DOI:10.1007/s11069-015-1811-x
  • Koukouvelas I, Litoseliti A, Nikolakopoulos K, Zygouri V (2015) Earthquake triggered rock falls and their role in the development of a rock slope: The case of Skolis Mountain, Greece. Eng Geol 191:71–85. DOI:10.1016/j.enggeo.2015.03.011
  • Koukouvelas I, Nikolakopoulos KG, Zygouri V, Kyriou A (2020) Post-seismic monitoring of cliff mass wasting using an unmanned aerial vehicle and field data at Egremni, Lefkada Island, Greece. Geomorphology 367:107306. DOI:10.1016/j.geomorph.2020.107306
  • Lan H, Derek Martin C, Lim CH (2007) RockFall analyst: A GIS extension for three-dimensional and spatially distributed rockfall hazard modeling. Comput Geosci 33:262–279. DOI:10.1016/j.cageo.2006.05.013
  • Leine RI, Schweizer A, Christen M, et al (2014) Simulation of rockfall trajectories with consideration of rock shape
  • Li L, Lan H (2015) Probabilistic modeling of rockfall trajectories: a review. Bull Eng Geol Environ 74:1163–1176. DOI:10.1007/s10064-015-0718-9
  • Liu G, Li J, Wang Z (2021) Experimental Verifications and Applications of 3D-DDA in Movement Characteristics and Disaster Processes of Rockfalls. Rock Mech Rock Eng. DOI:10.1007/s00603-021-02394-2
  • Loye A, Jaboyedoff M, Pedrazzini A (2009) Identification of potential rockfall source areas at a regional scale using a DEM-based geomorphometric analysis. Nat Hazards Earth Syst Sci 9:1643–1653. DOI:10.5194/nhess-9-1643-2009
  • Lu G, Caviezel A, Christen M, et al (2019) Modelling rockfall impact with scarring in compactable soils. Landslides 16:2353–2367. DOI:10.1007/s10346-019-01238-z
  • Manconi A, Ziegler M, Blöchliger T, Wolter A (2019) Technical note: optimization of unmanned aerial vehicles flight planning in steep terrains. Int J Remote Sens 40:2483–2492. DOI:10.1080/01431161.2019.1573334
  • Mary Vick L, Zimmer V, White C, et al (2019) Significance of substrate soil moisture content for rockfall hazard assessment. Nat Hazards Earth Syst Sci 19:1105–1117. DOI:10.5194/nhess-19-1105-2019
  • Matasci B, Jaboyedoff M, Loye A, et al (2015) Impacts of fracturing patterns on the rockfall susceptibility and erosion rate of stratified limestone. Geomorphology 241:83–97. DOI:10.1016/j.geomorph.2015.03.037
  • Michoud C, Derron M, Horton P, et al (2012) Rockfall hazard and risk assessments along roads at a regional scale : example in Swiss Alps. 615–629. DOI:10.5194/nhess-12-615-2012
  • Monsalve JJ, Pfreundschuh A, Soni A, Ripepi N (2021) Automated Discontinuity Extraction Software Versus Manual Virtual Discontinuity Mapping: Performance Evaluation in Rock Mass Characterization and Rockfall Hazard Identification. Mining, Metall Explor 38:1383–1394. DOI:10.1007/s42461-021-00416-9
  • Nasery MM, Cosgun SI, Temel BA (2022) Multi-Scenario Analysis of Rockfall Hazard for a Historical Vaulted Masonry Building in Sumela Monastery. Int J Archit Herit 1–29. DOI:10.1080/15583058.2022.2091967
  • Noël F, Jaboyedoff M, Caviezel A, et al (2022) Rockfall trajectory reconstruction: a flexible method utilizing video footage and high-resolution terrain models. Earth Surf Dyn 10:1141–1164. DOI:10.5194/esurf-10-1141-2022
  • Öztürk MZ, Çetinkaya G, Aydın S (2017) Köppen-Geiger İklim Sınıflandırmasına Göre Türkiye’nin İklim Tipleri. Coğrafya Derg 17-27 (In Turkish)
  • Pérez-Rey I, Riquelme A, González-deSantos LM, et al (2019) A multi-approach rockfall hazard assessment on a weathered granite natural rock slope. Landslides 16:2005–2015. DOI:10.1007/s10346-019-01208-5
  • Riquelme A, Cano M, Tomás R, Abellán A (2017) Identification of Rock Slope Discontinuity Sets from Laser Scanner and Photogrammetric Point Clouds: A Comparative Analysis. Procedia Eng 191:838–845. DOI:10.1016/j.proeng.2017.05.251
  • Riquelme A, Tomás R, Cano M, et al (2018) Automatic Mapping of Discontinuity Persistence on Rock Masses Using 3D Point Clouds. Rock Mech Rock Eng 51:3005–3028. DOI:10.1007/s00603-018-1519-9
  • Riquelme AJ, Abellán A, Tomás R, Jaboyedoff M (2014) A new approach for semi-automatic rock mass joints recognition from 3D point clouds. Comput Geosci 68:38–52. DOI:10.1016/j.cageo.2014.03.014
  • Ritchie AM (1963) Evaluation of Rockfall and Its Control. Highw Res Rec 17, Stab Rock Slopes, Highw Res Board, Natl Res Counc Washington, DC 13–28
  • Rodriguez J, Macciotta R, Hendry MT, et al (2020) UAVs for monitoring, investigation, and mitigation design of a rock slope with multiple failure mechanisms—a case study. Landslides 17:2027–2040. DOI:10.1007/s10346-020-01416-4
  • Sarro R, Carlos J, Mar R (2018) Rockfall Simulation Based on UAV Photogrammetry Data Obtained during an Emergency Declaration : Application at a Cultural Heritage Site. Remote Sens. DOI:10.3390/rs10121923
  • Sazid M (2019) Analysis of rockfall hazards along NH-15: A case study of Al-Hada road. Int J Geo-Engineering 10:1–13. DOI:10.1186/s40703-019-0097-3
  • Schilirò L, Robiati C, Smeraglia L, et al (2022) An integrated approach for the reconstruction of rockfall scenarios from UAV and satellite-based data in the Sorrento Peninsula (southern Italy). Eng Geol 308:106795. DOI:10.1016/j.enggeo.2022.106795
  • Schober A, Bannwart C, Keuschnig M (2012) Rockfall modelling in high alpine terrain - validation and limitations / Steinschlagsimulation in hochalpinem Raum - Validierung und Limitationen. Geomech Tunn 5:368–378. DOI:10.1002/geot.201200025
  • Sellmeier B, Thuro K (2017) Comparison of two 3D rockfall codes on behalf of a case study in the Bavarian Alps. Geomech und Tunnelbau 10:15–23. DOI:10.1002/geot.201600071
  • Singh A, Pal S, Kanungo DP (2018) Site-Specific Vulnerability Assessment of Buildings Exposed to Rockfalls. Renew Energy its Innov Technol 1–11. DOI:10.1007/978-981-13-2116-0_1
  • Taga H, Zorlu K (2016) Assessment of rockfall hazard on the steep-high slopes: Ermenek (Karaman, Turkey). Nat Hazards Earth Syst Sci Discuss 1–32. DOI:10.5194/nhess-2015-337
  • Tamminga A, Hugenholtz C, Eaton B, Lapointe M (2015) Hyperspatial Remote Sensing of Channel Reach Morphology and Hydraulic Fish Habitat Using an Unmanned Aerial Vehicle (UAV): A First Assessment in the Context of River Research and Management. River Res Appl 31:379–391. DOI:10.1002/rra.2743
  • Tanoli JI, Chen N, Ullah I, et al (2022) Modified “Rockfall Hazard Rating System for Pakistan (RHRSP)”: An Application for Hazard and Risk Assessment along the Karakoram Highway, Northwest Pakistan. Appl Sci 12:3778. DOI:10.3390/app12083778
  • Topal T, Akın MK, Akın M (2012) Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Nat Hazards 62:255–274. DOI:10.1007/s11069-011-9995-1
  • Török Á, Barsi Á, Bögöly G, et al (2017) Slope stability and rock fall hazard assessment of volcanic tuffs using RPAS and TLS with 2D FEM slope modelling. Nat Hazards Earth Syst Sci Discuss 1–30. DOI:10.5194/nhess-2017-56
  • Torsello G, Vallero G, Castelli M (2021) The role of block shape and slenderness in the preliminary estimation of rockfall propagation. IOP Conf Ser Earth Environ Sci 833:012177. DOI:10.1088/1755-1315/833/1/012177
  • Utlu M, Öztürk MZ, Şimşek M (2021) Yüksek Çözünürlüklü Sayısal Yüzey Modellerine Uygulanan Üç Boyutlu Analizler ile Kaya Düşmelerine Ait Sayısal Risk Değerlendirmesi: Ünlüyaka Köyü (Niğde, Türkiye). Içinde: Döker MF, Akköprü E (ed) COĞRAFYA ARAŞTIRMALARINDA COĞRAFİ BİLGİ SİSTEMLERİ UYGULAMALARI II, I. PEGEM AKADEMi, Ankara-Turkey, ss 51–69
  • Utlu M, Öztürk MZ, Şimşek M (2020a) Rockfall analysis based on UAV technology in Kazıklıali Gorge, Aladağlar (Taurus Mountains, Turkey). Int J Environ Geoinformatics 7:239–251. DOI:10.30897/ijegeo
  • Utlu M, Öztürk MZ, Şimşek M (2020b) Emli Vadisi’ndeki (Aladağlar) Talus Depolarının Kantitatif Analizlere Göre İncelenmesi. Içinde: Birinci S, Kıvanç Kaymaz Ç, Kızılkan Y (ed) COĞRAFİ PERSPEKTİFLE DAĞ VE DAĞLIK ALANLAR (Sürdürülebilirlik-Yönetim-Örnek Alan İncelemeleri), I. Kriter Yayınevi, İstanbul-Turkey, ss 51–72
  • Valkaniotis S, Papathanassiou G, Ganas A (2018) Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Eng. Geol. 245:141–15
  • Vo DT (2015) RAMMS : Rockfall versus Rockyfor3D in rockfall trajectory simulations at the Community of Vik , Norway Dam Thanh Vo RAMMS :: Rockfall versus Rockyfor3D in rockfall trajectory simulations at the Community of Vik , Norway. University of Oslo, Faculty of Mathematics and Natural Sciences, Master Thesis in Geosciences
  • Volkwein A, Schellenberg K, Labiouse V, et al (2011) Rockfall characterisation and structural protection - A review. Nat Hazards Earth Syst Sci 11:2617–2651. DOI:10.5194/nhess-11-2617-2011
  • Wang M, Zhou J, Chen J, et al (2023) Automatic identification of rock discontinuity and stability analysis of tunnel rock blocks using terrestrial laser scanning. J Rock Mech Geotech Eng. DOI:10.1016/j.jrmge.2022.12.015
  • Wang W, Zhao W, Chai B, et al (2022) Discontinuity interpretation and identification of potential rockfalls for high-steep slopes based on UAV nap-of-the-object photogrammetry. Comput Geosci 166:105191. DOI:10.1016/j.cageo.2022.105191
  • Wieczorek GF, Morrissey MM, Iovine G, Godt JW (1998) Rock-fall hazards in the Yosemite Valley, California. U S Geol Surv Open-file Rep 98–467:
  • Xu W, Zhang Y, Li X, et al (2020) Extraction and statistics of discontinuity orientation and trace length from typical fractured rock mass: A case study of the Xinchang underground research laboratory site, China. Eng Geol 269:105553. DOI:10.1016/j.enggeo.2020.105553
  • Yan J, Chen J, Tan C, et al (2023) Rockfall source areas identification at local scale by integrating discontinuity-based threshold slope angle and rockfall trajectory analyses. Eng Geol 313:106993. DOI:10.1016/j.enggeo.2023.106993
  • Yin Y, Li B, Gao Y, et al (2023) Geostructures, dynamics and risk mitigation of high-altitude and long-runout rockslides. J Rock Mech Geotech Eng 15:66–101. DOI:10.1016/j.jrmge.2022.11.001
  • Youssef AM, Pradhan B, Al-Kathery M, et al (2015) Assessment of rockfall hazard at Al-Noor Mountain, Makkah city (Saudi Arabia) using spatio-temporal remote sensing data and field investigation. J African Earth Sci 101:309–321. DOI:10.1016/j.jafrearsci.2014.09.021
  • Žabota B, Mikoš M, Kobal M (2021) Rockfall Modelling in Forested Areas: The Role of Digital Terrain Model Grid Cell Size. Appl Sci 11:1461. DOI:10.3390/app11041461
  • Zhang L (2006) Rock discontinuities. In: Zhang L (eds) Engineering properties of rocks, 4th edn. Elsevier, A. Içinde: Zhang L (ed) Elsevier., 4th edn. Elsevier, Amsterdam, ss 226–230
  • Zhang W, Zhao X, Pan X, et al (2022) Characterization of high and steep slopes and 3D rockfall statistical kinematic analysis for Kangyuqu area, China. Eng Geol 308:106807. DOI:10.1016/j.enggeo.2022.106807
  • Zhang Y, Yue P, Zhang G, et al (2019) Augmented Reality Mapping of Rock Mass Discontinuities and Rockfall Susceptibility Based on Unmanned Aerial Vehicle Photogrammetry. Remote Sens 11:1311. DOI:10.3390/rs11111311
There are 105 citations in total.

Details

Primary Language English
Subjects Photogrammetry and Remote Sensing, Geological Sciences and Engineering (Other), Physical Geography and Environmental Geology (Other)
Journal Section Research Articles
Authors

Mustafa Utlu 0000-0002-7508-4478

Muhammed Zeynel Öztürk 0000-0002-9834-7680

Mesut Şimşek 0000-0002-4678-4336

Mehmet Fatih Akgümüş 0000-0002-6844-8712

Early Pub Date October 11, 2023
Publication Date December 26, 2023
Published in Issue Year 2023

Cite

APA Utlu, M., Öztürk, M. Z., Şimşek, M., Akgümüş, M. F. (2023). Evaluation of rockfall hazard based on UAV technology and 3D Rockfall Simulations. International Journal of Environment and Geoinformatics, 10(4), 1-16. https://doi.org/10.30897/ijegeo.1323768