Research Article
BibTex RIS Cite

The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study

Year 2024, Volume: 9 Issue: 3, 399 - 422, 18.09.2024
https://doi.org/10.58559/ijes.1507464

Abstract

This study numerically examines the effects of chimney height, chimney radius and collector height on the velocity, pressure and temperature distribution in a Solar Chimney Power Plant (SCPP). The analyses were performed using ANSYS Fluent software with two different turbulence models (RNG k-ε and SST k-ω). The results show that increasing the chimney height significantly boosts the outlet velocity but decreases the outlet temperature. Conversely, as the chimney radius increases, the outlet velocity decreases and the outlet temperature slightly drops. Changes in collector height result in complex behavior for both turbulence models in terms of outlet velocity and temperature, highlighting the importance of an optimal collector height. The study includes detailed and numerical data on how different turbulence models can be used for performance analysis and optimization. According to the analysis results, increasing the chimney height from 100 meters to 200 meters resulted in a 35% increase in outlet velocity and a 20% decrease in outlet temperature in the RNG k-ε model. In the SST k-ω model, the same increase raised the outlet velocity by 30% and decreased the outlet temperature by 15%. The research showed that both RNG k-ε and SST k-ω turbulence models respond notably to changes in collector height and design parameters. The RNG k-ε model reacts more quickly and sensitively, while the SST k-ω model behaves more steadily.

References

  • [1] Tawalbeh M, Al-Othman A, Singh K, Douba I, Kabakebji D, Alkasrawi M. Microbial desalination cells for water purification and power generation: a critical review. Energy 2020; 209: 118493.
  • [2] Kumari U, Swamy K, Gupta A, Karri RR, Meikap BC. Global water challenge and future perspective. Green Technologies for the Defluoridation of Water. Elsevier 2021; 197–212.
  • [3] Kalogirou SA. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci 2005; 31: 242–281.
  • [4] IEA. World energy outlook. 2018.
  • [5] Wang W, Fan LW, Zhou P. Evolution of global fossil fuel trade dependencies. Energy 2022; 238: 121924.
  • [6] Tawalbeh M, Javed MN, Al-Othman A, Almomani F. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes' applications. Fuel 2022; 322: 124237.
  • [7] San Cristobal J. Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method. Renew. Energy 2011; 36(2): 498-502.
  • [8] Maghrabie HM, Abdelkareem MA, Elsaid K, Sayed ET. A review of solar chimney for natural ventilation of residential and non-residential buildings. Sustain. Energy Technol. Assessments 2022; 52: 102082.
  • [9] Trieb F, Langniß O, Klaiß H. Solar electricity generation - a comparative view of technologies, costs and environmental impact. Sol. Energy 1997; 59: 89-99.
  • [10] Kiwan S, Al-Nimr M, Salim I. A hybrid solar chimney/photovoltaic thermal system for direct electric power production and water distillation. Sustain. Energy Technol. Assessments 2020; 38: 100680.
  • [11] Tawalbeh M, Mohammed S, Alnaqbi A, Alshehhi S, Al-Othman A. Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates. Renewable Energy 2023; 202: 667-685.
  • [12] Haaf W. Solar chimneys. Part II: preliminary test results from the Manzanares pilot plant. Solar Energy 1984; 2: 141-161.
  • [13] Nizetic S, Ninic N, Klarin B. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy 2008; 33: 1680-1690.
  • [14] Zhou X, Yang J, Xiao B, Hou G, Xing F. Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering 2009; 29: 178-185.
  • [15] Fluri TP, Backstrom TWV. Performance analysis of the power conversion unit of a solar chimney power plant. Solar Energy 2008; 82: 999-1008.
  • [16] Larbi S, Bouhdjar A, Chergui T. Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renewable and Sustainable Energy Reviews 2010; 14(1): 470-477.
  • [17] Maia CB, Ferreira AG, Valle RM, Cortez MFB. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Computers & Fluids 2009; 38: 625-636.
  • [18] Khelifi C, Ferroudji F, Ouali M. Analytical modeling and optimization of a solar chimney power plant. International Journal of Engineering Research in Africa 2016; 25: 78-88.
  • [19] Cüce E. Güneş Bacası Güç Santrallerinde Toplayıcı Eğiminin Çıkış Gücüne ve Sistem Verimine Etkisi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2020; 25(2).
  • [20] Cuce PM, Cuce E, Mandal DK, Gayen DK et.al. ANN and CFD driven research on main performance characteristics of solar chimney power plants: Impact of chimney and collector angle. Case Studies in Thermal Engineering 2024; 60: 104568.
  • [21] Mandal DK, Biswas N, Manna N, Benim AC. Impact of chimney divergence and sloped absorber on energy efficacy of a solar chimney power plant (SCPP). Ain Shams Engineering Journal 2024; 15(2).
  • [22] Biswas N, Mandal D, Bose S, Manna N, Benim A.C. Experimental Treatment of Solar Chimney Power Plant- A Comprehensive Review. Energies 2023; 16(17): 6134.
  • [23] Biswas N, Mandal D, Manna N, Benim AC. Novel stair-shaped ground absorber for performance enhancement of solar chimney power plant. Applied Thermal Engineering 2023; 227: 120466.
  • [24] Mandal D, Biswas N, Barman A, Chakraborty R, Manna N. A novel design of absorber surface of solar chimney power plant (SCPP): Thermal assessment, exergy and regression analysis. Sustainable Energy Technologies and Assessments 2023; 56: 103039.
  • [25] Mandal D, Biswas N, Manna N, Gayen D, Benim AC. An application of artificial neural network (ANN) for comparative performance assessment of solar chimney (SC) plant for green energy production. Scientific Reports 2024; 979.
  • [26] Navarro J.M.A, Ruiz V.A, Hinojosa J.F, Moreno S, Maytorena V.M. Transient Thermal Analysis of a Double Duct Solar Roof Chimney Coupled With a Scaled Room. Journal of Solar Energy Engineering 2024; 146(1): 011008.
  • [27] Maia C.B, Silva J.O.C. CFD Analysis of a Small-Scale Solar Chimney Exposed to Ambient Crosswind. Sustainability 2022; 14(22): 15208.
  • [28] Önal M, Koç A, Köse Ö, Koç Y, Yağlı H. Numerical Examination of a Solar Chimney Power Plant Designed for the Iskenderun Region. Konya Mühendislik Bilimleri Dergisi 2022; 10(3): 548-562.
  • [29] Ashjaee M, Zandian A, The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy 2010; 51: 465-473.
  • [30] Bayareh M. Numerical simulation of a solar chimney power plant in the southern region of Iran. Energy Equipment and Systems 2017; 5(4): 431-437.
  • [31] Kalantar V, Zare M. Simulation of flow and heat transfer in 3D solar chimney power plants-numerical analysis. Jordan International Energy Conference 2011.
  • [32] Li J, Guo H, Huang S. Power generation quality analysis and geometric optimization for solar chimney power plants. Solar Energy 2016; 139: 228-237.
Year 2024, Volume: 9 Issue: 3, 399 - 422, 18.09.2024
https://doi.org/10.58559/ijes.1507464

Abstract

References

  • [1] Tawalbeh M, Al-Othman A, Singh K, Douba I, Kabakebji D, Alkasrawi M. Microbial desalination cells for water purification and power generation: a critical review. Energy 2020; 209: 118493.
  • [2] Kumari U, Swamy K, Gupta A, Karri RR, Meikap BC. Global water challenge and future perspective. Green Technologies for the Defluoridation of Water. Elsevier 2021; 197–212.
  • [3] Kalogirou SA. Seawater desalination using renewable energy sources. Prog. Energy Combust. Sci 2005; 31: 242–281.
  • [4] IEA. World energy outlook. 2018.
  • [5] Wang W, Fan LW, Zhou P. Evolution of global fossil fuel trade dependencies. Energy 2022; 238: 121924.
  • [6] Tawalbeh M, Javed MN, Al-Othman A, Almomani F. The novel advancements of nanomaterials in biofuel cells with a focus on electrodes' applications. Fuel 2022; 322: 124237.
  • [7] San Cristobal J. Multi-criteria decision-making in the selection of a renewable energy project in Spain: the Vikor method. Renew. Energy 2011; 36(2): 498-502.
  • [8] Maghrabie HM, Abdelkareem MA, Elsaid K, Sayed ET. A review of solar chimney for natural ventilation of residential and non-residential buildings. Sustain. Energy Technol. Assessments 2022; 52: 102082.
  • [9] Trieb F, Langniß O, Klaiß H. Solar electricity generation - a comparative view of technologies, costs and environmental impact. Sol. Energy 1997; 59: 89-99.
  • [10] Kiwan S, Al-Nimr M, Salim I. A hybrid solar chimney/photovoltaic thermal system for direct electric power production and water distillation. Sustain. Energy Technol. Assessments 2020; 38: 100680.
  • [11] Tawalbeh M, Mohammed S, Alnaqbi A, Alshehhi S, Al-Othman A. Analysis for hybrid photovoltaic/solar chimney seawater desalination plant: A CFD simulation in Sharjah, United Arab Emirates. Renewable Energy 2023; 202: 667-685.
  • [12] Haaf W. Solar chimneys. Part II: preliminary test results from the Manzanares pilot plant. Solar Energy 1984; 2: 141-161.
  • [13] Nizetic S, Ninic N, Klarin B. Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy 2008; 33: 1680-1690.
  • [14] Zhou X, Yang J, Xiao B, Hou G, Xing F. Analysis of chimney height for solar chimney power plant. Applied Thermal Engineering 2009; 29: 178-185.
  • [15] Fluri TP, Backstrom TWV. Performance analysis of the power conversion unit of a solar chimney power plant. Solar Energy 2008; 82: 999-1008.
  • [16] Larbi S, Bouhdjar A, Chergui T. Performance analysis of a solar chimney power plant in the southwestern region of Algeria. Renewable and Sustainable Energy Reviews 2010; 14(1): 470-477.
  • [17] Maia CB, Ferreira AG, Valle RM, Cortez MFB. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Computers & Fluids 2009; 38: 625-636.
  • [18] Khelifi C, Ferroudji F, Ouali M. Analytical modeling and optimization of a solar chimney power plant. International Journal of Engineering Research in Africa 2016; 25: 78-88.
  • [19] Cüce E. Güneş Bacası Güç Santrallerinde Toplayıcı Eğiminin Çıkış Gücüne ve Sistem Verimine Etkisi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi 2020; 25(2).
  • [20] Cuce PM, Cuce E, Mandal DK, Gayen DK et.al. ANN and CFD driven research on main performance characteristics of solar chimney power plants: Impact of chimney and collector angle. Case Studies in Thermal Engineering 2024; 60: 104568.
  • [21] Mandal DK, Biswas N, Manna N, Benim AC. Impact of chimney divergence and sloped absorber on energy efficacy of a solar chimney power plant (SCPP). Ain Shams Engineering Journal 2024; 15(2).
  • [22] Biswas N, Mandal D, Bose S, Manna N, Benim A.C. Experimental Treatment of Solar Chimney Power Plant- A Comprehensive Review. Energies 2023; 16(17): 6134.
  • [23] Biswas N, Mandal D, Manna N, Benim AC. Novel stair-shaped ground absorber for performance enhancement of solar chimney power plant. Applied Thermal Engineering 2023; 227: 120466.
  • [24] Mandal D, Biswas N, Barman A, Chakraborty R, Manna N. A novel design of absorber surface of solar chimney power plant (SCPP): Thermal assessment, exergy and regression analysis. Sustainable Energy Technologies and Assessments 2023; 56: 103039.
  • [25] Mandal D, Biswas N, Manna N, Gayen D, Benim AC. An application of artificial neural network (ANN) for comparative performance assessment of solar chimney (SC) plant for green energy production. Scientific Reports 2024; 979.
  • [26] Navarro J.M.A, Ruiz V.A, Hinojosa J.F, Moreno S, Maytorena V.M. Transient Thermal Analysis of a Double Duct Solar Roof Chimney Coupled With a Scaled Room. Journal of Solar Energy Engineering 2024; 146(1): 011008.
  • [27] Maia C.B, Silva J.O.C. CFD Analysis of a Small-Scale Solar Chimney Exposed to Ambient Crosswind. Sustainability 2022; 14(22): 15208.
  • [28] Önal M, Koç A, Köse Ö, Koç Y, Yağlı H. Numerical Examination of a Solar Chimney Power Plant Designed for the Iskenderun Region. Konya Mühendislik Bilimleri Dergisi 2022; 10(3): 548-562.
  • [29] Ashjaee M, Zandian A, The thermal efficiency improvement of a steam Rankine cycle by innovative design of a hybrid cooling tower and a solar chimney concept. Renewable Energy 2010; 51: 465-473.
  • [30] Bayareh M. Numerical simulation of a solar chimney power plant in the southern region of Iran. Energy Equipment and Systems 2017; 5(4): 431-437.
  • [31] Kalantar V, Zare M. Simulation of flow and heat transfer in 3D solar chimney power plants-numerical analysis. Jordan International Energy Conference 2011.
  • [32] Li J, Guo H, Huang S. Power generation quality analysis and geometric optimization for solar chimney power plants. Solar Energy 2016; 139: 228-237.
There are 32 citations in total.

Details

Primary Language English
Subjects Environmentally Sustainable Engineering, Clean Production Technologies, Electrical Energy Generation (Incl. Renewables, Excl. Photovoltaics), Solar Energy Systems, Renewable Energy Resources , Energy Generation, Conversion and Storage (Excl. Chemical and Electrical)
Journal Section Research Article
Authors

Fuat Tan 0000-0002-4194-5591

Alp Eren Dede 0009-0009-5391-8695

Publication Date September 18, 2024
Submission Date June 30, 2024
Acceptance Date July 24, 2024
Published in Issue Year 2024 Volume: 9 Issue: 3

Cite

APA Tan, F., & Dede, A. E. (2024). The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study. International Journal of Energy Studies, 9(3), 399-422. https://doi.org/10.58559/ijes.1507464
AMA Tan F, Dede AE. The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study. Int J Energy Studies. September 2024;9(3):399-422. doi:10.58559/ijes.1507464
Chicago Tan, Fuat, and Alp Eren Dede. “The Impact of Turbulence Models and Design Parameters on Solar Chimney Power Plant Efficiency: A CFD Study”. International Journal of Energy Studies 9, no. 3 (September 2024): 399-422. https://doi.org/10.58559/ijes.1507464.
EndNote Tan F, Dede AE (September 1, 2024) The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study. International Journal of Energy Studies 9 3 399–422.
IEEE F. Tan and A. E. Dede, “The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study”, Int J Energy Studies, vol. 9, no. 3, pp. 399–422, 2024, doi: 10.58559/ijes.1507464.
ISNAD Tan, Fuat - Dede, Alp Eren. “The Impact of Turbulence Models and Design Parameters on Solar Chimney Power Plant Efficiency: A CFD Study”. International Journal of Energy Studies 9/3 (September 2024), 399-422. https://doi.org/10.58559/ijes.1507464.
JAMA Tan F, Dede AE. The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study. Int J Energy Studies. 2024;9:399–422.
MLA Tan, Fuat and Alp Eren Dede. “The Impact of Turbulence Models and Design Parameters on Solar Chimney Power Plant Efficiency: A CFD Study”. International Journal of Energy Studies, vol. 9, no. 3, 2024, pp. 399-22, doi:10.58559/ijes.1507464.
Vancouver Tan F, Dede AE. The impact of turbulence models and design parameters on solar chimney power plant efficiency: A CFD study. Int J Energy Studies. 2024;9(3):399-422.