Review
BibTex RIS Cite

Mayalardan Pigment Eldesi

Year 2023, Volume: 1 Issue: 1, 27 - 38, 29.09.2023

Abstract

Pigmentler dahil edildiği ortamda tamamen çözünmeyen renklendirici maddelerdir. Genellikle kaynaklarına göre doğal ve sentetik olarak sınıflandırılırlar. Sentetik pigmentler düşük maliyet ve yüksek verimle üretilebilmeleri gibi avantajların yanı sıra sağlığa ve çevreye zararlı etkilere sahip olması gibi dezavantajlara sahiptir. Maya pigmentleri güvenli, toksik olmama ve biyolojik olarak parçalanabilme özellikleriyle sentetik pigmentlere, mayaların yüksek gelişme hızı, çeşitli ucuz substrat kaynaklarına kolay uyumu ve toksin oluşturmama özellikleriyle de diğer mikrobiyal pigmentlere alternatif olarak kullanılmaktadır. Fermantasyon ortamında karbon, azot ve mineral madde miktarı, pH, sıcaklık, inkübasyon süresi, çalkalama hızı gibi çeşitli parametrelerin optimizasyonuyla mayalardan çevreye zarar vermeyen, daha verimli ve daha yüksek ekonomik değere sahip pigment üretimi sağlanabilir. Mayalardan elde edilen pigmentler antioksidan, antimikrobiyal, antikanser ve antitümör gibi sağlık üzerine olumlu etkilere ve çeşitli endüstrilerde (gıda, ilaç, kozmetik, tekstil gb.) kullanılma potansiyeline sahiptir.

References

  • Andreieva, Y., Lyzak, O., Liu, W., Kang, Y., Dmytruk, K., & Sibirny, A. (2020). SEF1 and VMA1 Genes Regulate Riboflavin Biosynthesis in the Flavinogenic Yeast Candida Famata. Cytology and Genetics, 54(5), 379-385. https://doi.org/10.3103/S0095452720050023
  • Andreieva, Y., Yana Petrovska, Lyzak, Oleksii, Liu, Wen, Kang, Y., Dmytruk, K., & Andriy Sibirny, |. (2020). Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). https://doi.org/10.1002/yea.3503
  • Avilla Barretto, D., Shyam, ·, & Vootla, K. (2020). Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764. World Journal of Microbiology and Biotechnology, 36(3), 159. https://doi.org/10.1007/s11274-020-02924-0
  • B Kaur, D. C. H. K., & D Chakraborty, H. K. (2009). Production and stability analysis of yellowish pink pigments from Rhodotorula rubra MTCC 1446. The Internet Journal of Microbiology, 7(1). https://doi.org/10.5580/245b
  • Bao, R., Gao, N., Lv, J., Ji, C., Liang, H., Li, S., Yu, C., Wang, Z., & Lin, X. (2019). Enhancement of Torularhodin Production in Rhodosporidium toruloides by Agrobacterium tumefaciens-Mediated Transformation and Culture Condition Optimization. Journal of Agricultural and Food Chemistry, 67(4), 1156-1164. https://doi.org/10.1021/ACS.JAFC.8B04667/ASSET/IMAGES/LARGE/JF-2018-04667H_0004.JPEG
  • Behera, H. T., Mojumdar, A., Nivedita, S., & Ray, L. (2021). Microbial Pigments: Secondary Metabolites with Multifaceted Roles. In Microbial Polymers (ss. 631-654). Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6_25
  • Bonadio, M. de P., Freita, L. A. de, & Mutton, M. J. R. (2018). Carotenoid production in sugarcane juice and synthetic media supplemented with nutrients by Rhodotorula rubra l02. Brazilian Journal of Microbiology, 49(4), 872-878. https://doi.org/10.1016/j.bjm.2018.02.010
  • Cerda, A., Artola, A., Barrena, R., Font, X., Gea, T., & Sánchez, A. (2019). Innovative Production of Bioproducts From Organic Waste Through Solid-State Fermentation. Frontiers in Sustainable Food Systems, 3, 63. https://doi.org/10.3389/FSUFS.2019.00063/BIBTEX
  • Chen, M., Li, M., Ye, L., & Yu, H. (2022). Construction of Canthaxanthin-Producing Yeast by Combining Spatiotemporal Regulation and Pleiotropic Drug Resistance Engineering. ACS Synthetic Biology, 11(1), 325-333. https://doi.org/10.1021/acssynbio.1c00437
  • Chen, Q., Liu, F., Wu, Y., He, Y., Kong, Q., & Sang, H. (2023). Fungal melanin-induced metabolic reprogramming in macrophages is crucial for inflammation. Journal of Medical Mycology, 33(2), 101359. https://doi.org/10.1016/j.mycmed.2023.101359
  • Choi, K.-Y. (2021). Bioprocess of Microbial Melanin Production and Isolation. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.765110
  • Chreptowicz, K., Mierzejewska, J., Tkáčová, J., Młynek, M., & Čertik, M. (2019). Carotenoid-Producing Yeasts: Identification and Characteristics of Environmental Isolates with a Valuable Extracellular Enzymatic Activity. Microorganisms, 7(12), 653. https://doi.org/10.3390/microorganisms7120653
  • Dikel, Ç. (2021). Astaksantin’in kimyası ve uygulamaları üzerine bir inceleme A review of astaxantine’s chemistry and its applications. Journal of Advances in VetBio Science and Techniques, 6(3), 318-330. https://doi.org/10.31797/vetbio
  • Du, C., Guo, Y., Cheng, Y., Han, M., Zhang, W., & Qian, H. (2017). Anti-cancer effects of torulene, isolated from Sporidiobolus pararoseus, on human prostate cancer LNCaP and PC-3 cells via a mitochondrial signal pathway and the down-regulation of AR expression. RSC Advances, 7(5), 2466-2474. https://doi.org/10.1039/C6RA24721K
  • El-Naggar, N. E.-A., & Saber, W. I. A. (2022). Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers, 14(7), 1339. https://doi.org/10.3390/polym14071339
  • Elsayis, A., Hassan, S. W. M., Ghanem, K. M., & Khairy, H. (2022). Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria. BMC Microbiology, 22(1), 92. https://doi.org/10.1186/s12866-022-02505-1
  • Eryilmaz, E. B., Dursun, D., & Dalgiç, A. C. (2016). Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatalysis and Agricultural Biotechnology, 7, 224-227. https://doi.org/10.1016/J.BCAB.2016.06.012
  • Ghilardi, C., Sanmartin Negrete, P., Carelli, A. A., & Borroni, V. (2020). Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing, 7(1), 52. https://doi.org/10.1186/s40643-020-00341-7
  • Gong, Z., Zhang, S., & Liu, J. (2023). Recent Advances in Chitin Biosynthesis Associated with the Morphology and Secondary Metabolite Synthesis of Filamentous Fungi in Submerged Fermentation. Journal of Fungi, 9(2), 205. https://doi.org/10.3390/JOF9020205/S1
  • Grewal, J., Woła̧cewicz, M., Pyter, W., Joshi, N., Drewniak, L., & Pranaw, K. (2022). Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.832918
  • Igreja, W. S., Maia, F. de A., Lopes, A. S., & Chisté, R. C. (2021). Biotechnological Production of Carotenoids Using Low Cost-Substrates Is Influenced by Cultivation Parameters: A Review. International Journal of Molecular Sciences, 22(16), 8819. https://doi.org/10.3390/ijms22168819
  • Jeevaratnam, K., & Latha, B. V. (2010). Purification and Characterization of the Pigments from Rhodotorula glutinis DFR-PDY Isolated from Natural Source. Içinde Global Journal of Biotechnology & Biochemistry (C. 5, Sayı 3).
  • Jurić, S., Jurić, M., Król-Kilińska, Ż., Vlahoviček-Kahlina, K., Vinceković, M., Dragović-Uzelac, V., & Donsì, F. (2022). Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International, 38(8), 1735-1790. https://doi.org/10.1080/87559129.2020.1837862
  • Kanamoto, H., Nakamura, K., & Misawa, N. (2021). Carotenoid Production in Oleaginous Yeasts (ss. 153-163). https://doi.org/10.1007/978-981-15-7360-6_12
  • Kim, J. K., Kim, J. I., Lee, N. K., Hahm, Y. T., Baik, M. Y., & Kim, B. Y. (2010). Extraction of β-carotene produced from yeast Rhodosporidium sp. and its heat stability. Food Science and Biotechnology, 19(1), 263-266. https://doi.org/10.1007/s10068-010-0038-6
  • Kostovová, I., Dana Byrtusová, ·, Rapta, M., Babák, · Vladimír, & Márová, I. (2021). The variability of carotenoid pigments and fatty acids produced by some yeasts within Sporidiobolales and Cystofilobasidiales. Chemical Papers, 75, 3353-3362. https://doi.org/10.1007/s11696-021-01567-1
  • Kot, A. M., Błażejak, S., Gientka, I., Kieliszek, M., & Bryś, J. (2018). Torulene and torularhodin: “new” fungal carotenoids for industry? Microbial Cell Factories, 17(1), 49. https://doi.org/10.1186/s12934-018-0893-z
  • Kot, A. M., Błażejak, S., Kieliszek, M., Gientka, I., Piwowarek, K., & Brzezińska, R. (2020). Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes. Biocatalysis and Agricultural Biotechnology, 26, 101634. https://doi.org/10.1016/J.BCAB.2020.101634
  • Lai, J.-X., Chen, X., Bu, J., Hu, B.-B., & Zhu, M.-J. (2022). Direct production of astaxanthin from food waste by Phaffia rhodozyma. Process Biochemistry, 113, 224-233. https://doi.org/10.1016/j.procbio.2022.01.003
  • Libkind, D., Moliné, M., & Colabella, F. (2018). Isolation and Selection of New Astaxanthin-Producing Strains of Phaffia rhodozyma (ss. 297-310). https://doi.org/10.1007/978-1-4939-8742-9_18
  • Liu, C., Cui, Y., Pi, F., Guo, Y., Cheng, Y., & Qian, H. (2019). Torularhodin Ameliorates Oxidative Activity in Vitro and d-Galactose-Induced Liver Injury via the Nrf2/HO-1 Signaling Pathway in Vivo. Journal of Agricultural and Food Chemistry, 67(36), 10059-10068. https://doi.org/10.1021/acs.jafc.9b03847
  • Liu, R., Meng, X., Mo, C., Wei, X., & Ma, A. (2022). Melanin of fungi: from classification to application. World Journal of Microbiology and Biotechnology, 38(12), 228. https://doi.org/10.1007/s11274-022-03415-0
  • Liu, S., Hu, W., Wang, Z., & Chen, T. (2020). Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 19(1), 31. https://doi.org/10.1186/s12934-020-01302-7
  • Lopes, F. C., & Ligabue-Braun, R. (2021). Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. Frontiers in Sustainable Food Systems, 5, 589414. https://doi.org/10.3389/fsufs.2021.589414
  • Machado, W. R. C., Murari, C. S., Duarte, A. L. F., & del Bianchi, V. L. (2022). Optimization of agro-industrial coproducts (molasses and cassava wastewater) for the simultaneous production of lipids and carotenoids by Rhodotorula mucilaginosa. Biocatalysis and Agricultural Biotechnology, 42, 102342. https://doi.org/10.1016/j.bcab.2022.102342
  • Machado, W. R. C., Silva, L. G. da, Vanzela, E. S. L., & del Bianchi, V. L. (2019). Evaluation of the process conditions for the production of microbial carotenoids by the recently isolated Rhodotorula mucilaginosa URM 7409. Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.26718
  • Manimala, M., & Murugesan, R. (2018). Characterization of carotenoid pigment production from yeast Sporobolomyces sp. and their application in food products. ~ 2818 ~ Journal of Pharmacognosy and Phytochemistry, 1, 2818-2821.
  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x
  • Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science & Technology, 99, 389-401. https://doi.org/10.1016/j.tifs.2020.03.013
  • Martí-Quijal, F. J., Khubber, S., Remize, F., Tomasevic, I., Roselló-Soto, E., & Barba, F. J. (2021). Obtaining Antioxidants and Natural Preservatives from Food By-Products through Fermentation: A Review. Fermentation 2021, Vol. 7, Page 106, 7(3), 106. https://doi.org/10.3390/FERMENTATION7030106
  • Mata-Gómez, L. C., Mapelli-Brahm, P., Meléndez-Martínez, A. J., Méndez-Zavala, A., Morales-Oyervides, L., & Montañez, J. (2023). Microbial Carotenoid Synthesis Optimization in Goat Cheese Whey Using the Robust Taguchi Method: A Sustainable Approach to Help Tackle Vitamin A Deficiency. Foods, 12(3), 658. https://doi.org/10.3390/foods12030658
  • Mıdık, F. (2021). Rhodotorula Cinsine Ait Bazı Maya Türlerinin Beta-Karoten Üretimlerinin İncelenmesi. (Doktora Tezi). YÖK Tez Merkezi (695063).
  • Moreira, M. D., Melo, M. M., Coimbra, J. M., Reis, K. C. dos, Schwan, R. F., & Silva, C. F. (2018). Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Management, 82, 93-99. https://doi.org/10.1016/j.wasman.2018.10.017
  • Mumtaz, R., Bashir, S., Numan, M., Shinwari, Z. K., & Ali, M. (2019). Pigments from Soil Bacteria and Their Therapeutic Properties: A Mini Review. Current Microbiology, 76(6), 783-790. https://doi.org/10.1007/s00284-018-1557-2
  • Mussagy, C. U., Gonzalez-Miquel, M., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2022). Microbial torularhodin – a comprehensive review. Critical Reviews in Biotechnology, 1-19. https://doi.org/10.1080/07388551.2022.2041540
  • Mussagy, C. U., Guimarães, A. A. C., Rocha, L. V. F., Winterburn, J., Santos-Ebinuma, V. de C., & Pereira, J. F. B. (2021). Improvement of carotenoids production from Rhodotorula glutinis CCT-2186. Biochemical Engineering Journal, 165, 107827. https://doi.org/10.1016/J.BEJ.2020.107827
  • Mussagy, C. U., Khan, S., & Kot, A. M. (2022). Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Critical Reviews in Food Science and Nutrition, 62(25), 6932-6946. https://doi.org/10.1080/10408398.2021.1908222
  • Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 103(3), 1095-1114. https://doi.org/10.1007/s00253-018-9557-5
  • Oh, J.-J., Kim, J. Y., Kwon, S. L., Hwang, D.-H., Choi, Y.-E., & Kim, G.-H. (2020). Production and characterization of melanin pigments derived from Amorphotheca resinae. Journal of Microbiology, 58(8), 648-656. https://doi.org/10.1007/s12275-020-0054-z
  • Oiza, N., Moral-Vico, J., Sánchez, A., Oviedo, E. R., & Gea, T. (2022). Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes 2022, Vol. 10, Page 2675, 10(12), 2675. https://doi.org/10.3390/PR10122675
  • Paul, D., Kumari, P. K., & Siddiqui, N. (2023). Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. Fermentation 2023, Vol. 9, Page 147, 9(2), 147. https://doi.org/10.3390/FERMENTATION9020147
  • Petrovska, Y., Lyzak, O., Dmytruk, K., & Sibirny, A. (2020). Effect of Gene SFU1 on Riboflavin Synthesis in Flavinogenic Yeast Candida famata. Cytology and Genetics, 54(5), 408-412. https://doi.org/10.3103/S0095452720050060
  • Petrovska, Y., Lyzak, O., Ruchala, J., Dmytruk, K., & Sibirny, A. (2022). Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation, 8(4), 141. https://doi.org/10.3390/fermentation8040141
  • Qi, F., Shen, P., Hu, R., Xue, T., Jiang, X., Qin, L., Chen, Y., & Huang, J. (2020). Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnology for Biofuels, 13(1). https://doi.org/10.1186/s13068-020-01712-0
  • Ramesh, C., Prasastha, V. R., Venkatachalam, M., & Dufossé, L. (2022). Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. Fermentation, 8(9), 460. https://doi.org/10.3390/fermentation8090460
  • Rana, B., Bhattacharyya, M., Patni, B., Arya, M., & Joshi, G. K. (2021). The Realm of Microbial Pigments in the Food Color Market. Frontiers in Sustainable Food Systems, 5, 603892. https://doi.org/10.3389/fsufs.2021.603892
  • Rao, A. S., Deka, S. P., More, S. S., Nair, A., More, V. S., & Ananthjaraju, K. S. (2021). A Comprehensive Review on Different Microbial-Derived Pigments and Their Multipurpose Activities. In Microbial Polymers (ss. 479-519). Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6_20
  • Rapoport, A., Guzhova, I., Bernetti, L., Buzzini, P., Kieliszek, M., & Kot, A. M. (2021). Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021, Vol. 11, Page 92, 11(2), 92. https://doi.org/10.3390/METABO11020092
  • Rather, L. J., Mir, S. S., Ganie, S. A., Shahid-ul-Islam, & Li, Q. (2023). Research progress, challenges, and perspectives in microbial pigment production for industrial applications - A review. Dyes and Pigments, 210, 110989. https://doi.org/10.1016/j.dyepig.2022.110989
  • Rekha, R., Nimsi, K. A., Manjusha, K., & Sirajudheen, T. K. (2022). Marine yeast Rhodotorula paludigena VA 242 a pigment enhancing feed additive for the Ornamental Fish Koi Carp. Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2022.05.008
  • Ribeiro, J. E. S., Sant’Ana, A. M. da S., Martini, M., Sorce, C., Andreucci, A., Melo, D. J. N. de, & Silva, F. L. H. da. (2019). Rhodotorula glutinis cultivation on cassava wastewater for carotenoids and fatty acids generation. Biocatalysis and Agricultural Biotechnology, 22, 101419. https://doi.org/10.1016/j.bcab.2019.101419
  • Ruchala, J., Andreieva, Y. A., Tsyrulnyk, A. O., Sobchuk, S. M., Najdecka, A., Wen, L., Kang, Y., Dmytruk, O. V., Dmytruk, K. V., Fedorovych, D. V., & Sibirny, A. A. (2022). Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata. Microbial Cell Factories, 21(1), 161. https://doi.org/10.1186/s12934-022-01888-0
  • Saleh, H., Abdelrazak, A., Elsayed, A., El-Shishtawy, H., & Osman, Y. (2018). Optimizing production of a biopesticide protectant by black yeast. Egyptian Journal of Biological Pest Control, 28(1), 72. https://doi.org/10.1186/s41938-018-0078-4
  • Sánchez-Muñoz, S., Mariano-Silva, G., Leite, M. O., Mura, F. B., Verma, M. L., Da Silva, S. S., & Chandel, A. K. (2020). Production of fungal and bacterial pigments and their applications. Biotechnological Production of Bioactive Compounds, 327-361. https://doi.org/10.1016/B978-0-444-64323-0.00011-4
  • Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial Pigments in the Food Industry—Challenges and the Way Forward. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00007
  • Sharma, R., & Ghoshal, G. (2020). Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology Reports, 25, e00407. https://doi.org/10.1016/j.btre.2019.e00407
  • Sinha, S., Chakrabarti, A., Singh, G., Kumar, K. K., Gaur, N. A., Arora, A., Singh, K. N., Singh, S., & Paul, D. (2021). Isolation and identification of carotenoid-producing yeast and evaluation of antimalarial activity of the extracted carotenoid(s) against P. falciparum. Biologia Futura, 72(3), 325-337. https://doi.org/10.1007/s42977-021-00081-5
  • Sinha, S., Das, S., Saha, B., Paul, D., & Basu, B. (2023). Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Frontiers in Microbiology, 13, 1088477. https://doi.org/10.3389/FMICB.2022.1088477/FULL
  • Tran-Ly, A. N., Reyes, C., Schwarze, F. W. M. R., & Ribera, J. (2020). Microbial production of melanin and its various applications. World Journal of Microbiology and Biotechnology, 36(11), 170. https://doi.org/10.1007/s11274-020-02941-z
  • Ungureanu, C., Dumitriu, C., Popescu, S., Enculescu, M., Tofan, V., Popescu, M., & Pirvu, C. (2016). Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification. Bioelectrochemistry, 107, 14-24. https://doi.org/10.1016/j.bioelechem.2015.09.001
  • Vargas-Sinisterra, A. F., & Ramírez-Castrillón, M. (2020). Yeast carotenoids: production and activity as antimicrobial biomolecule. Archives of Microbiology 2020 203:3, 203(3), 873-888. https://doi.org/10.1007/S00203-020-02111-7
  • Villegas-Méndez, M. Á., Aguilar-Machado, D. E., Balagurusamy, N., Montañez, J., & Morales-Oyervides, L. (2019). Agro-industrial wastes for the synthesis of carotenoids by Xanthophyllomyces dendrorhous: Mesquite pods-based medium design and optimization. Biochemical Engineering Journal, 150, 107260. https://doi.org/10.1016/j.bej.2019.107260
  • Vishnupriya, S., Bhavaniramya, S., Baskaran, D., & Karthiayani, A. (2021). Microbial Pigments and Their Application. Microbial Polymers (ss. 193-214). Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6_9
  • Wang, L., Liu, Z., Jiang, H., & Mao, X. (2021). Biotechnology advances in β-carotene production by microorganisms. Trends in Food Science & Technology, 111, 322-332. https://doi.org/10.1016/j.tifs.2021.02.077
  • Watcharawipas, A., & Runguphan, W. (2023). Red yeasts and their carotenogenic enzymes for microbial carotenoid production. FEMS Yeast Research, 23. https://doi.org/10.1093/femsyr/foac063
  • Wei, C., Wu, T., Ao, H., Qian, X., Wang, Z., & Sun, J. (2020). Increased torulene production by the red yeast, Sporidiobolus pararoseus, using citrus juice. Preparative Biochemistry & Biotechnology, 50(1), 66-73. https://doi.org/10.1080/10826068.2019.1663533
  • Yoo, A. Y., Alnaeeli, M., & Park, J. K. (2016). Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochemistry, 51(4), 463-473. https://doi.org/10.1016/j.procbio.2016.01.008
  • You, J., Pan, X., Yang, C., Du, Y., Osire, T., Yang, T., Zhang, X., Xu, M., Xu, G., & Rao, Z. (2021). Microbial production of riboflavin: Biotechnological advances and perspectives. Metabolic Engineering, 68, 46-58. https://doi.org/10.1016/j.ymben.2021.08.009
  • Zhang, W., Hua, H., Guo, Y., Cheng, Y., Pi, F., Yao, W., Xie, Y., & Qian, H. (2020). Torularhodin from Sporidiobolus pararoseus Attenuates d-galactose/AlCl3-Induced Cognitive Impairment, Oxidative Stress, and Neuroinflammation via the Nrf2/NF-κB Pathway. Journal of Agricultural and Food Chemistry, 68(24), 6604-6614. https://doi.org/10.1021/acs.jafc.0c01892
  • Zhang, Z., Zhang, X., & Tan, T. (2014). Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 157, 149-153. https://doi.org/10.1016/J.BIORTECH.2014.01.039

Production of Pigment From Yeast

Year 2023, Volume: 1 Issue: 1, 27 - 38, 29.09.2023

Abstract

Pigments are coloring substances that do not dissolve completely in the medium in which they are included. They are generally classified as natural and synthetic based on their source. In addition to advantages such as low cost and high efficiency, synthetic pigments have disadvantages such as harmful effects on health and the environment (non-biodegradability). Yeast pigments are used as an alternative to synthetic pigments with their safe, non-toxic and biodegradable properties. It is used as an alternative to other microbial pigments with a high growth rate of yeasts, easy adaptation to various cheap substrate sources and non-toxicity. By optimizing various parameters such as the amount of carbon, nitrogen and mineral substances, pH, temperature, incubation time, and agitation speed in the fermentation medium, environmentally friendly, more efficient and higher economic value pigment production can be achieved from yeast. Pigments obtained from yeast have positive effects on health such as antioxidant, antimicrobial, anticancer and antitumor, and have the potential to be used in various industries (food, medicine, cosmetics, textiles, etc.).

References

  • Andreieva, Y., Lyzak, O., Liu, W., Kang, Y., Dmytruk, K., & Sibirny, A. (2020). SEF1 and VMA1 Genes Regulate Riboflavin Biosynthesis in the Flavinogenic Yeast Candida Famata. Cytology and Genetics, 54(5), 379-385. https://doi.org/10.3103/S0095452720050023
  • Andreieva, Y., Yana Petrovska, Lyzak, Oleksii, Liu, Wen, Kang, Y., Dmytruk, K., & Andriy Sibirny, |. (2020). Role of the regulatory genes SEF1, VMA1 and SFU1 in riboflavin synthesis in the flavinogenic yeast Candida famata (Candida flareri). https://doi.org/10.1002/yea.3503
  • Avilla Barretto, D., Shyam, ·, & Vootla, K. (2020). Biological activities of melanin pigment extracted from Bombyx mori gut-associated yeast Cryptococcus rajasthanensis KY627764. World Journal of Microbiology and Biotechnology, 36(3), 159. https://doi.org/10.1007/s11274-020-02924-0
  • B Kaur, D. C. H. K., & D Chakraborty, H. K. (2009). Production and stability analysis of yellowish pink pigments from Rhodotorula rubra MTCC 1446. The Internet Journal of Microbiology, 7(1). https://doi.org/10.5580/245b
  • Bao, R., Gao, N., Lv, J., Ji, C., Liang, H., Li, S., Yu, C., Wang, Z., & Lin, X. (2019). Enhancement of Torularhodin Production in Rhodosporidium toruloides by Agrobacterium tumefaciens-Mediated Transformation and Culture Condition Optimization. Journal of Agricultural and Food Chemistry, 67(4), 1156-1164. https://doi.org/10.1021/ACS.JAFC.8B04667/ASSET/IMAGES/LARGE/JF-2018-04667H_0004.JPEG
  • Behera, H. T., Mojumdar, A., Nivedita, S., & Ray, L. (2021). Microbial Pigments: Secondary Metabolites with Multifaceted Roles. In Microbial Polymers (ss. 631-654). Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6_25
  • Bonadio, M. de P., Freita, L. A. de, & Mutton, M. J. R. (2018). Carotenoid production in sugarcane juice and synthetic media supplemented with nutrients by Rhodotorula rubra l02. Brazilian Journal of Microbiology, 49(4), 872-878. https://doi.org/10.1016/j.bjm.2018.02.010
  • Cerda, A., Artola, A., Barrena, R., Font, X., Gea, T., & Sánchez, A. (2019). Innovative Production of Bioproducts From Organic Waste Through Solid-State Fermentation. Frontiers in Sustainable Food Systems, 3, 63. https://doi.org/10.3389/FSUFS.2019.00063/BIBTEX
  • Chen, M., Li, M., Ye, L., & Yu, H. (2022). Construction of Canthaxanthin-Producing Yeast by Combining Spatiotemporal Regulation and Pleiotropic Drug Resistance Engineering. ACS Synthetic Biology, 11(1), 325-333. https://doi.org/10.1021/acssynbio.1c00437
  • Chen, Q., Liu, F., Wu, Y., He, Y., Kong, Q., & Sang, H. (2023). Fungal melanin-induced metabolic reprogramming in macrophages is crucial for inflammation. Journal of Medical Mycology, 33(2), 101359. https://doi.org/10.1016/j.mycmed.2023.101359
  • Choi, K.-Y. (2021). Bioprocess of Microbial Melanin Production and Isolation. Frontiers in Bioengineering and Biotechnology, 9. https://doi.org/10.3389/fbioe.2021.765110
  • Chreptowicz, K., Mierzejewska, J., Tkáčová, J., Młynek, M., & Čertik, M. (2019). Carotenoid-Producing Yeasts: Identification and Characteristics of Environmental Isolates with a Valuable Extracellular Enzymatic Activity. Microorganisms, 7(12), 653. https://doi.org/10.3390/microorganisms7120653
  • Dikel, Ç. (2021). Astaksantin’in kimyası ve uygulamaları üzerine bir inceleme A review of astaxantine’s chemistry and its applications. Journal of Advances in VetBio Science and Techniques, 6(3), 318-330. https://doi.org/10.31797/vetbio
  • Du, C., Guo, Y., Cheng, Y., Han, M., Zhang, W., & Qian, H. (2017). Anti-cancer effects of torulene, isolated from Sporidiobolus pararoseus, on human prostate cancer LNCaP and PC-3 cells via a mitochondrial signal pathway and the down-regulation of AR expression. RSC Advances, 7(5), 2466-2474. https://doi.org/10.1039/C6RA24721K
  • El-Naggar, N. E.-A., & Saber, W. I. A. (2022). Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers, 14(7), 1339. https://doi.org/10.3390/polym14071339
  • Elsayis, A., Hassan, S. W. M., Ghanem, K. M., & Khairy, H. (2022). Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria. BMC Microbiology, 22(1), 92. https://doi.org/10.1186/s12866-022-02505-1
  • Eryilmaz, E. B., Dursun, D., & Dalgiç, A. C. (2016). Multiple optimization and statistical evaluation of astaxanthin production utilizing olive pomace. Biocatalysis and Agricultural Biotechnology, 7, 224-227. https://doi.org/10.1016/J.BCAB.2016.06.012
  • Ghilardi, C., Sanmartin Negrete, P., Carelli, A. A., & Borroni, V. (2020). Evaluation of olive mill waste as substrate for carotenoid production by Rhodotorula mucilaginosa. Bioresources and Bioprocessing, 7(1), 52. https://doi.org/10.1186/s40643-020-00341-7
  • Gong, Z., Zhang, S., & Liu, J. (2023). Recent Advances in Chitin Biosynthesis Associated with the Morphology and Secondary Metabolite Synthesis of Filamentous Fungi in Submerged Fermentation. Journal of Fungi, 9(2), 205. https://doi.org/10.3390/JOF9020205/S1
  • Grewal, J., Woła̧cewicz, M., Pyter, W., Joshi, N., Drewniak, L., & Pranaw, K. (2022). Colorful Treasure From Agro-Industrial Wastes: A Sustainable Chassis for Microbial Pigment Production. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.832918
  • Igreja, W. S., Maia, F. de A., Lopes, A. S., & Chisté, R. C. (2021). Biotechnological Production of Carotenoids Using Low Cost-Substrates Is Influenced by Cultivation Parameters: A Review. International Journal of Molecular Sciences, 22(16), 8819. https://doi.org/10.3390/ijms22168819
  • Jeevaratnam, K., & Latha, B. V. (2010). Purification and Characterization of the Pigments from Rhodotorula glutinis DFR-PDY Isolated from Natural Source. Içinde Global Journal of Biotechnology & Biochemistry (C. 5, Sayı 3).
  • Jurić, S., Jurić, M., Król-Kilińska, Ż., Vlahoviček-Kahlina, K., Vinceković, M., Dragović-Uzelac, V., & Donsì, F. (2022). Sources, stability, encapsulation and application of natural pigments in foods. Food Reviews International, 38(8), 1735-1790. https://doi.org/10.1080/87559129.2020.1837862
  • Kanamoto, H., Nakamura, K., & Misawa, N. (2021). Carotenoid Production in Oleaginous Yeasts (ss. 153-163). https://doi.org/10.1007/978-981-15-7360-6_12
  • Kim, J. K., Kim, J. I., Lee, N. K., Hahm, Y. T., Baik, M. Y., & Kim, B. Y. (2010). Extraction of β-carotene produced from yeast Rhodosporidium sp. and its heat stability. Food Science and Biotechnology, 19(1), 263-266. https://doi.org/10.1007/s10068-010-0038-6
  • Kostovová, I., Dana Byrtusová, ·, Rapta, M., Babák, · Vladimír, & Márová, I. (2021). The variability of carotenoid pigments and fatty acids produced by some yeasts within Sporidiobolales and Cystofilobasidiales. Chemical Papers, 75, 3353-3362. https://doi.org/10.1007/s11696-021-01567-1
  • Kot, A. M., Błażejak, S., Gientka, I., Kieliszek, M., & Bryś, J. (2018). Torulene and torularhodin: “new” fungal carotenoids for industry? Microbial Cell Factories, 17(1), 49. https://doi.org/10.1186/s12934-018-0893-z
  • Kot, A. M., Błażejak, S., Kieliszek, M., Gientka, I., Piwowarek, K., & Brzezińska, R. (2020). Production of lipids and carotenoids by Rhodotorula gracilis ATCC 10788 yeast in a bioreactor using low-cost wastes. Biocatalysis and Agricultural Biotechnology, 26, 101634. https://doi.org/10.1016/J.BCAB.2020.101634
  • Lai, J.-X., Chen, X., Bu, J., Hu, B.-B., & Zhu, M.-J. (2022). Direct production of astaxanthin from food waste by Phaffia rhodozyma. Process Biochemistry, 113, 224-233. https://doi.org/10.1016/j.procbio.2022.01.003
  • Libkind, D., Moliné, M., & Colabella, F. (2018). Isolation and Selection of New Astaxanthin-Producing Strains of Phaffia rhodozyma (ss. 297-310). https://doi.org/10.1007/978-1-4939-8742-9_18
  • Liu, C., Cui, Y., Pi, F., Guo, Y., Cheng, Y., & Qian, H. (2019). Torularhodin Ameliorates Oxidative Activity in Vitro and d-Galactose-Induced Liver Injury via the Nrf2/HO-1 Signaling Pathway in Vivo. Journal of Agricultural and Food Chemistry, 67(36), 10059-10068. https://doi.org/10.1021/acs.jafc.9b03847
  • Liu, R., Meng, X., Mo, C., Wei, X., & Ma, A. (2022). Melanin of fungi: from classification to application. World Journal of Microbiology and Biotechnology, 38(12), 228. https://doi.org/10.1007/s11274-022-03415-0
  • Liu, S., Hu, W., Wang, Z., & Chen, T. (2020). Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 19(1), 31. https://doi.org/10.1186/s12934-020-01302-7
  • Lopes, F. C., & Ligabue-Braun, R. (2021). Agro-Industrial Residues: Eco-Friendly and Inexpensive Substrates for Microbial Pigments Production. Frontiers in Sustainable Food Systems, 5, 589414. https://doi.org/10.3389/fsufs.2021.589414
  • Machado, W. R. C., Murari, C. S., Duarte, A. L. F., & del Bianchi, V. L. (2022). Optimization of agro-industrial coproducts (molasses and cassava wastewater) for the simultaneous production of lipids and carotenoids by Rhodotorula mucilaginosa. Biocatalysis and Agricultural Biotechnology, 42, 102342. https://doi.org/10.1016/j.bcab.2022.102342
  • Machado, W. R. C., Silva, L. G. da, Vanzela, E. S. L., & del Bianchi, V. L. (2019). Evaluation of the process conditions for the production of microbial carotenoids by the recently isolated Rhodotorula mucilaginosa URM 7409. Brazilian Journal of Food Technology, 22. https://doi.org/10.1590/1981-6723.26718
  • Manimala, M., & Murugesan, R. (2018). Characterization of carotenoid pigment production from yeast Sporobolomyces sp. and their application in food products. ~ 2818 ~ Journal of Pharmacognosy and Phytochemistry, 1, 2818-2821.
  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1), 1-16. https://doi.org/10.1007/s11418-019-01364-x
  • Mapelli-Brahm, P., Barba, F. J., Remize, F., Garcia, C., Fessard, A., Mousavi Khaneghah, A., Sant’Ana, A. S., Lorenzo, J. M., Montesano, D., & Meléndez-Martínez, A. J. (2020). The impact of fermentation processes on the production, retention and bioavailability of carotenoids: An overview. Trends in Food Science & Technology, 99, 389-401. https://doi.org/10.1016/j.tifs.2020.03.013
  • Martí-Quijal, F. J., Khubber, S., Remize, F., Tomasevic, I., Roselló-Soto, E., & Barba, F. J. (2021). Obtaining Antioxidants and Natural Preservatives from Food By-Products through Fermentation: A Review. Fermentation 2021, Vol. 7, Page 106, 7(3), 106. https://doi.org/10.3390/FERMENTATION7030106
  • Mata-Gómez, L. C., Mapelli-Brahm, P., Meléndez-Martínez, A. J., Méndez-Zavala, A., Morales-Oyervides, L., & Montañez, J. (2023). Microbial Carotenoid Synthesis Optimization in Goat Cheese Whey Using the Robust Taguchi Method: A Sustainable Approach to Help Tackle Vitamin A Deficiency. Foods, 12(3), 658. https://doi.org/10.3390/foods12030658
  • Mıdık, F. (2021). Rhodotorula Cinsine Ait Bazı Maya Türlerinin Beta-Karoten Üretimlerinin İncelenmesi. (Doktora Tezi). YÖK Tez Merkezi (695063).
  • Moreira, M. D., Melo, M. M., Coimbra, J. M., Reis, K. C. dos, Schwan, R. F., & Silva, C. F. (2018). Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Management, 82, 93-99. https://doi.org/10.1016/j.wasman.2018.10.017
  • Mumtaz, R., Bashir, S., Numan, M., Shinwari, Z. K., & Ali, M. (2019). Pigments from Soil Bacteria and Their Therapeutic Properties: A Mini Review. Current Microbiology, 76(6), 783-790. https://doi.org/10.1007/s00284-018-1557-2
  • Mussagy, C. U., Gonzalez-Miquel, M., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2022). Microbial torularhodin – a comprehensive review. Critical Reviews in Biotechnology, 1-19. https://doi.org/10.1080/07388551.2022.2041540
  • Mussagy, C. U., Guimarães, A. A. C., Rocha, L. V. F., Winterburn, J., Santos-Ebinuma, V. de C., & Pereira, J. F. B. (2021). Improvement of carotenoids production from Rhodotorula glutinis CCT-2186. Biochemical Engineering Journal, 165, 107827. https://doi.org/10.1016/J.BEJ.2020.107827
  • Mussagy, C. U., Khan, S., & Kot, A. M. (2022). Current developments on the application of microbial carotenoids as an alternative to synthetic pigments. Critical Reviews in Food Science and Nutrition, 62(25), 6932-6946. https://doi.org/10.1080/10408398.2021.1908222
  • Mussagy, C. U., Winterburn, J., Santos-Ebinuma, V. C., & Pereira, J. F. B. (2019). Production and extraction of carotenoids produced by microorganisms. Applied Microbiology and Biotechnology, 103(3), 1095-1114. https://doi.org/10.1007/s00253-018-9557-5
  • Oh, J.-J., Kim, J. Y., Kwon, S. L., Hwang, D.-H., Choi, Y.-E., & Kim, G.-H. (2020). Production and characterization of melanin pigments derived from Amorphotheca resinae. Journal of Microbiology, 58(8), 648-656. https://doi.org/10.1007/s12275-020-0054-z
  • Oiza, N., Moral-Vico, J., Sánchez, A., Oviedo, E. R., & Gea, T. (2022). Solid-State Fermentation from Organic Wastes: A New Generation of Bioproducts. Processes 2022, Vol. 10, Page 2675, 10(12), 2675. https://doi.org/10.3390/PR10122675
  • Paul, D., Kumari, P. K., & Siddiqui, N. (2023). Yeast Carotenoids: Cost-Effective Fermentation Strategies for Health Care Applications. Fermentation 2023, Vol. 9, Page 147, 9(2), 147. https://doi.org/10.3390/FERMENTATION9020147
  • Petrovska, Y., Lyzak, O., Dmytruk, K., & Sibirny, A. (2020). Effect of Gene SFU1 on Riboflavin Synthesis in Flavinogenic Yeast Candida famata. Cytology and Genetics, 54(5), 408-412. https://doi.org/10.3103/S0095452720050060
  • Petrovska, Y., Lyzak, O., Ruchala, J., Dmytruk, K., & Sibirny, A. (2022). Co-Overexpression of RIB1 and RIB6 Increases Riboflavin Production in the Yeast Candida famata. Fermentation, 8(4), 141. https://doi.org/10.3390/fermentation8040141
  • Qi, F., Shen, P., Hu, R., Xue, T., Jiang, X., Qin, L., Chen, Y., & Huang, J. (2020). Carotenoids and lipid production from Rhodosporidium toruloides cultured in tea waste hydrolysate. Biotechnology for Biofuels, 13(1). https://doi.org/10.1186/s13068-020-01712-0
  • Ramesh, C., Prasastha, V. R., Venkatachalam, M., & Dufossé, L. (2022). Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. Fermentation, 8(9), 460. https://doi.org/10.3390/fermentation8090460
  • Rana, B., Bhattacharyya, M., Patni, B., Arya, M., & Joshi, G. K. (2021). The Realm of Microbial Pigments in the Food Color Market. Frontiers in Sustainable Food Systems, 5, 603892. https://doi.org/10.3389/fsufs.2021.603892
  • Rao, A. S., Deka, S. P., More, S. S., Nair, A., More, V. S., & Ananthjaraju, K. S. (2021). A Comprehensive Review on Different Microbial-Derived Pigments and Their Multipurpose Activities. In Microbial Polymers (ss. 479-519). Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6_20
  • Rapoport, A., Guzhova, I., Bernetti, L., Buzzini, P., Kieliszek, M., & Kot, A. M. (2021). Carotenoids and Some Other Pigments from Fungi and Yeasts. Metabolites 2021, Vol. 11, Page 92, 11(2), 92. https://doi.org/10.3390/METABO11020092
  • Rather, L. J., Mir, S. S., Ganie, S. A., Shahid-ul-Islam, & Li, Q. (2023). Research progress, challenges, and perspectives in microbial pigment production for industrial applications - A review. Dyes and Pigments, 210, 110989. https://doi.org/10.1016/j.dyepig.2022.110989
  • Rekha, R., Nimsi, K. A., Manjusha, K., & Sirajudheen, T. K. (2022). Marine yeast Rhodotorula paludigena VA 242 a pigment enhancing feed additive for the Ornamental Fish Koi Carp. Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2022.05.008
  • Ribeiro, J. E. S., Sant’Ana, A. M. da S., Martini, M., Sorce, C., Andreucci, A., Melo, D. J. N. de, & Silva, F. L. H. da. (2019). Rhodotorula glutinis cultivation on cassava wastewater for carotenoids and fatty acids generation. Biocatalysis and Agricultural Biotechnology, 22, 101419. https://doi.org/10.1016/j.bcab.2019.101419
  • Ruchala, J., Andreieva, Y. A., Tsyrulnyk, A. O., Sobchuk, S. M., Najdecka, A., Wen, L., Kang, Y., Dmytruk, O. V., Dmytruk, K. V., Fedorovych, D. V., & Sibirny, A. A. (2022). Cheese whey supports high riboflavin synthesis by the engineered strains of the flavinogenic yeast Candida famata. Microbial Cell Factories, 21(1), 161. https://doi.org/10.1186/s12934-022-01888-0
  • Saleh, H., Abdelrazak, A., Elsayed, A., El-Shishtawy, H., & Osman, Y. (2018). Optimizing production of a biopesticide protectant by black yeast. Egyptian Journal of Biological Pest Control, 28(1), 72. https://doi.org/10.1186/s41938-018-0078-4
  • Sánchez-Muñoz, S., Mariano-Silva, G., Leite, M. O., Mura, F. B., Verma, M. L., Da Silva, S. S., & Chandel, A. K. (2020). Production of fungal and bacterial pigments and their applications. Biotechnological Production of Bioactive Compounds, 327-361. https://doi.org/10.1016/B978-0-444-64323-0.00011-4
  • Sen, T., Barrow, C. J., & Deshmukh, S. K. (2019). Microbial Pigments in the Food Industry—Challenges and the Way Forward. Frontiers in Nutrition, 6. https://doi.org/10.3389/fnut.2019.00007
  • Sharma, R., & Ghoshal, G. (2020). Optimization of carotenoids production by Rhodotorula mucilaginosa (MTCC-1403) using agro-industrial waste in bioreactor: A statistical approach. Biotechnology Reports, 25, e00407. https://doi.org/10.1016/j.btre.2019.e00407
  • Sinha, S., Chakrabarti, A., Singh, G., Kumar, K. K., Gaur, N. A., Arora, A., Singh, K. N., Singh, S., & Paul, D. (2021). Isolation and identification of carotenoid-producing yeast and evaluation of antimalarial activity of the extracted carotenoid(s) against P. falciparum. Biologia Futura, 72(3), 325-337. https://doi.org/10.1007/s42977-021-00081-5
  • Sinha, S., Das, S., Saha, B., Paul, D., & Basu, B. (2023). Anti-microbial, anti-oxidant, and anti-breast cancer properties unraveled in yeast carotenoids produced via cost-effective fermentation technique utilizing waste hydrolysate. Frontiers in Microbiology, 13, 1088477. https://doi.org/10.3389/FMICB.2022.1088477/FULL
  • Tran-Ly, A. N., Reyes, C., Schwarze, F. W. M. R., & Ribera, J. (2020). Microbial production of melanin and its various applications. World Journal of Microbiology and Biotechnology, 36(11), 170. https://doi.org/10.1007/s11274-020-02941-z
  • Ungureanu, C., Dumitriu, C., Popescu, S., Enculescu, M., Tofan, V., Popescu, M., & Pirvu, C. (2016). Enhancing antimicrobial activity of TiO2/Ti by torularhodin bioinspired surface modification. Bioelectrochemistry, 107, 14-24. https://doi.org/10.1016/j.bioelechem.2015.09.001
  • Vargas-Sinisterra, A. F., & Ramírez-Castrillón, M. (2020). Yeast carotenoids: production and activity as antimicrobial biomolecule. Archives of Microbiology 2020 203:3, 203(3), 873-888. https://doi.org/10.1007/S00203-020-02111-7
  • Villegas-Méndez, M. Á., Aguilar-Machado, D. E., Balagurusamy, N., Montañez, J., & Morales-Oyervides, L. (2019). Agro-industrial wastes for the synthesis of carotenoids by Xanthophyllomyces dendrorhous: Mesquite pods-based medium design and optimization. Biochemical Engineering Journal, 150, 107260. https://doi.org/10.1016/j.bej.2019.107260
  • Vishnupriya, S., Bhavaniramya, S., Baskaran, D., & Karthiayani, A. (2021). Microbial Pigments and Their Application. Microbial Polymers (ss. 193-214). Springer Singapore. https://doi.org/10.1007/978-981-16-0045-6_9
  • Wang, L., Liu, Z., Jiang, H., & Mao, X. (2021). Biotechnology advances in β-carotene production by microorganisms. Trends in Food Science & Technology, 111, 322-332. https://doi.org/10.1016/j.tifs.2021.02.077
  • Watcharawipas, A., & Runguphan, W. (2023). Red yeasts and their carotenogenic enzymes for microbial carotenoid production. FEMS Yeast Research, 23. https://doi.org/10.1093/femsyr/foac063
  • Wei, C., Wu, T., Ao, H., Qian, X., Wang, Z., & Sun, J. (2020). Increased torulene production by the red yeast, Sporidiobolus pararoseus, using citrus juice. Preparative Biochemistry & Biotechnology, 50(1), 66-73. https://doi.org/10.1080/10826068.2019.1663533
  • Yoo, A. Y., Alnaeeli, M., & Park, J. K. (2016). Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochemistry, 51(4), 463-473. https://doi.org/10.1016/j.procbio.2016.01.008
  • You, J., Pan, X., Yang, C., Du, Y., Osire, T., Yang, T., Zhang, X., Xu, M., Xu, G., & Rao, Z. (2021). Microbial production of riboflavin: Biotechnological advances and perspectives. Metabolic Engineering, 68, 46-58. https://doi.org/10.1016/j.ymben.2021.08.009
  • Zhang, W., Hua, H., Guo, Y., Cheng, Y., Pi, F., Yao, W., Xie, Y., & Qian, H. (2020). Torularhodin from Sporidiobolus pararoseus Attenuates d-galactose/AlCl3-Induced Cognitive Impairment, Oxidative Stress, and Neuroinflammation via the Nrf2/NF-κB Pathway. Journal of Agricultural and Food Chemistry, 68(24), 6604-6614. https://doi.org/10.1021/acs.jafc.0c01892
  • Zhang, Z., Zhang, X., & Tan, T. (2014). Lipid and carotenoid production by Rhodotorula glutinis under irradiation/high-temperature and dark/low-temperature cultivation. Bioresource Technology, 157, 149-153. https://doi.org/10.1016/J.BIORTECH.2014.01.039
There are 80 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Reviews
Authors

Feyza Cüre This is me 0009-0002-3739-6478

Funda Karbancıoğlu Güler 0000-0001-6576-0084

Publication Date September 29, 2023
Submission Date April 13, 2023
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

APA Cüre, F., & Karbancıoğlu Güler, F. (2023). Mayalardan Pigment Eldesi. ITU Journal of Food Science and Technology, 1(1), 27-38.