Review
BibTex RIS Cite

Effect of Processed Foods on Advanced Glycation End Products: Cancer Cases

Year 2024, Volume: 2 Issue: 1, 9 - 18, 28.03.2024

Abstract

Advanced glycation end products (AGEs) are heterogeneous compounds that occur endogenously and exogenously during metabolism. These compounds increase because of processed food consumption. Nowadays, fast-paced living conditions lead individuals to consume processed food. High numbers of processed foods consumed because of nutrition cause inflammation in metabolism. Inflammation causes atherosclerosis, diabetes, kidney diseases, cancer, liver, and some neurodegenerative diseases. The purpose of this review study was to detail the relationship between AGEs and some types of cancer depending on nutrition and dietary habits. For this purpose, cancer types such as breast cancer, colorectal cancer, and pancreatic cancer, which have been common in recent years, were discussed. AGEs bind to receptors on cells, affect certain transcription factors, prevent cancer cell apoptosis, and support proliferation. Studies have shown that the number of AGEs is affected by nutrition and dietary habits. In this context, it has been shown that phenolic compounds, vitamins, and limited AGE intake play an important role in minimizing the effects of these products. This review study revealed the effects of AGEs on cancer and examined in detail the conditions that affect the formation of these products. When the studies are evaluated, it is aimed to raise public awareness by emphasizing that the formation of advanced glycation end products is directly related to nutritional habits and food processing methods, that it causes different diseases, especially cancer, and how its formation can be limited.

References

  • Abdulrahman, G. O., & Rahman, G. A. (2012). Epidemiology of breast cancer in Europe and Africa. Journal of Cancer Epidemiology, 2012.
  • Ahmad, S., & Farhan, M. (2016). Impact of non-enzymatic glycation in neurodegenerative diseases: Role of natural products in prevention. The benefits of natural products for neurodegenerative diseases, 125-151.
  • Ahmed, N. (2005). Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67(1), 3-21.
  • Alexander, D. D., Morimoto, L. M., Mink, P. J., & Lowe, K. A. (2010). Summary and meta-analysis of prospective studies of animal fat intake and breast cancer. Nutrition Research Reviews, 23(1), 169-179.
  • Alkan, Ş. B., Artaç, M., Aksoy, F., Belviranlı, M. M., Gürbilek, M., Çizmecioğlu, H. A., & Rakıcıoğlu, N. (2023). Are dietary and serum advanced glycation end-products related to inflammation and oxidation biomarkers in breast cancer patients: a follow-up study. Supportive Care in Cancer, 31(6), 334.
  • Alzahrani, S. M., Al Doghaither, H. A., & Al Ghafari, A. B. (2021). General insight into cancer: An overview of colorectal cancer. Molecular and Clinical Oncology, 15(6), 1-8.
  • Asadipooya, K., & Uy, E. M. (2019). Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. Journal of the Endocrine Society, 3(10), 1799-1818.
  • Azizian-Farsani, F., Abedpoor, N., Hasan Sheikhha, M., Gure, A. O., Nasr-Esfahani, M. H., & Ghaedi, K. (2020). Receptor for advanced glycation end products acts as a fuel to colorectal cancer development. Frontiers in Oncology, 10, 552283.
  • Bento, C., Goncalves, A. C., Silva, B., & Silva, L. R. (2022). Peach (Prunus persica): Phytochemicals and health benefits. Food Reviews International, 38(8), 1703-1734.
  • Bestil, D. N., & Uysal, H. (2023). Flavonoidler Ve Biyolojik Aktiviteleri. Antakya Veteriner Bilimleri Dergisi, 2(1), 49-55.
  • Boone, B. A., Orlichenko, L., Schapiro, N. E., Loughran, P., Gianfrate, G. C., Ellis, J. T., ... & Zeh, H. J. (2015). The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Therapy, 22(6), 326-334.
  • Burak, E., Ergene, E., & Hecer, C. (2022). Besin Hazırlama Ve Pişirme Yöntemlerinin İleri Glikasyon Son Ürünleri Üzerine Etkisi. Aydın Gastronomy, 6(2), 275-281.
  • Dariya, B., & Nagaraju, G. P. (2020). Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discovery Today, 25(9), 1614-1623.
  • Dong, L., Li, Y., Chen, Q., Liu, Y., Qiao, Z., Sang, S., & Liu, L. (2023). Research advances of advanced glycation end products in milk and dairy products: Formation, determination, control strategy and immunometabolism via gut microbiota. Food Chemistry, 135861.
  • Gill, V., Kumar, V., Singh, K., Kumar, A., & Kim, J. J. (2019). Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules, 9(12), 888.
  • Huang, S., Dong, X., Zhang, Y., Chen, Y., Yu, Y., Huang, M., & Zheng, Y. (2022). Formation of advanced glycation end products in raw and subsequently boiled broiler muscle: biological variation and effects of postmortem ageing and storage. Food Science and Human Wellness, 11(2), 255-262.
  • Huang, S., Huang, M., & Dong, X. (2023). Advanced glycation end products in meat during processing and storage: a review. Food Reviews International, 39(3), 1716-1732
  • International Agency for Research on Cancer (WHO). (2020). Global Cancer Observatory: Cancer Today. Retrieved from (Accessed December 22, 2023).
  • Jang, D. S., Lee, G. Y., Lee, Y. M., Kim, Y. S., Sun, H., Kim, D. H., & Kim, J. S. (2009). Flavan-3-ols having a γ-lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chemical and Pharmaceutical Bulletin, 57(4), 397-400.
  • Jangde, N., Ray, R., & Rai, V. (2020). RAGE and its ligands: from pathogenesis to therapeutics. Critical Reviews In Biochemistry and Molecular Biology, 55(6), 555-575.
  • Jariyapamornkoon, N., Yibchok-anun, S., & Adisakwattana, S. (2013). Inhibition of advanced glycation end products by red grape skin extract and its antioxidant activity. BMC complementary and alternative medicine, 13(1), 1-9.
  • Khan, M., Liu, H., Wang, J., & Sun, B. (2020). Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Research International, 130, 108933.
  • Kheirouri, S., & Alizadeh, M. (2020). Vitamin D and advanced glycation end products and their receptors. Pharmacological Research, 158, 104879.
  • Koçatakan, P., & Ataseven, H. (2021). Pankreas Kanseri. Ankara Eğitim ve Araştırma Hastanesi Tıp Dergisi, 54(1), 59-65.
  • Li, J., Wu, P. W., Zhou, Y., Dai, B., Zhang, P. F., Zhang, Y. H., & Shi, X. L. (2018). Rage induces hepatocellular carcinoma proliferation and sorafenib resistance by modulating autophagy. Cell Death & Disease, 9(2), 225.
  • Liang, H., Zhong, Y., Zhou, S., & Peng, L. (2011). Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Letters, 313(1), 91-98.
  • Lo, C. Y., Li, S., Wang, Y., Tan, D., Pan, M. H., Sang, S., & Ho, C. T. (2008). Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chemistry, 107(3), 1099-1105.
  • Luo, Y., Zhang, J., Ho, C. T., & Li, S. (2022). Management of Maillard reaction-derived reactive carbonyl species and advanced glycation end products by tea and tea polyphenols. Food Science and Human Wellness, 11(3), 557-567.
  • Lyu, C., Kong, W., Liu, Z., Wang, S., Zhao, P., Liang, K., ... & Du, Y. (2023). Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nature Biomedical Engineering, 1-18.
  • Maatallah, S., Dabbou, S., Castagna, A., Guizani, M., Hajlaoui, H., Ranieri, A. M., & Flamini, G. (2020). Prunus persica by-products: A source of minerals, phenols and volatile compounds. Scientia Horticulturae, 261, 109016.
  • Madduma Hewage, S. R. K. (2022). Lingonberry (Vaccinium vitis-idaea L.) supplementation protects against chronic kidney disease and improves fatty liver.
  • Mao, Z., Baker, J. R., Takeuchi, M., Hyogo, H., Tjønneland, A., Eriksen, A. K., ... & Fedirko, V. (2023). Prediagnostic serum glyceraldehyde‐derived advanced glycation end products and mortality among colorectal cancer patients. International Journal of Cancer, 152(11), 2257-2268.
  • Maxwell, K. N., & Nathanson, K. L. (2013). Common breast cancer risk variants in the post-COGS era: a comprehensive review. Breast Cancer Research, 15, 1-17.
  • Menini, S., Iacobini, C., de Latouliere, L., Manni, I., Vitale, M., Pilozzi, E., ... & Pugliese, G. (2020). Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in KrasG12D/+ mice. Journal of Experimental & Clinical Cancer Research, 39(1), 1-16.
  • Milkovska‐Stamenova, S., Krieg, L., & Hoffmann, R. (2019). Products of early and advanced glycation in the soy milk proteome. Molecular Nutrition & Food research, 63(2), 1800725.
  • Millán-Laleona, A., Bielsa, F. J., Aranda-Cañada, E., Gómez-Rincón, C., Errea, P., & López, V. (2023). Antioxidant, Antidiabetic, and Anti-Obesity Properties of Apple Pulp Extracts (Malus domestica Bork): A Comparative Study of 15 Local and Commercial Cultivars from Spain. Biology, 12(7), 891.
  • Nedić, O., Rattan, S. I. S., Grune, T., & Trougakos, I. P. (2013). Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radical Research, 47(sup1), 28-38. Nowotny, K., Schröter, D., Schreiner, M., & Grune, T. (2018). Dietary advanced glycation end products and their relevance for human health. Ageing Research Reviews, 47, 55-66.
  • Rabizadeh, S., Heidari, F., Karimi, R., Rajab, A., Rahimi‐Dehgolan, S., Yadegar, A., ... & Nakhjavani, M. (2023). Vitamin C supplementation lowers advanced glycation end products (AGEs) and malondialdehyde (MDA) in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled clinical trial. Food Science & Nutrition, 11(10), 5967-5977
  • Račkauskienė, I., Pukalskas, A., Fiore, A., Troise, A. D., & Venskutonis, P. R. (2019). Phytochemical‐rich antioxidant extracts of Vaccinium vitis‐idaea L. leaves inhibit the formation of toxic Maillard reaction products in food models. Journal of food science, 84(12), 3494-3503.
  • Rojas, A., Figueroa, H., & Morales, E. (2010). Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis, 31(3), 334-341
  • Rungratanawanich, W., Qu, Y., Wang, X., Essa, M. M., & Song, B. J. (2021). Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Experimental & molecular medicine, 53(2), 168-188.
  • Shahab, U., Ahmad, M. K., Mahdi, A. A., Waseem, M., Arif, B., & Ahmad, S. (2018, April). The receptor for advanced glycation end products: A fuel to pancreatic cancer. In Seminars in Cancer Biology (Vol. 49, pp. 37-43). Academic Press.
  • Sharaf, H., Matou-Nasri, S., Wang, Q., Rabhan, Z., Al-Eidi, H., Al Abdulrahman, A., & Ahmed, N. (2015). Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(3), 429-441.
  • Sharma, C., Kaur, A., Thind, S. S., Singh, B., & Raina, S. (2015). Advanced glycation End-products (AGEs): an emerging concern for processed food industries. Journal of Food Science and Technology, 52, 7561-7576.
  • Swami, P., O’connell, K. A., Thiyagarajan, S., Crawford, A., Patil, P., Radhakrishnan, P., ... & Leclerc, E. (2021). Inhibition of the receptor for advanced glycation End products enhances the cytotoxic effect of gemcitabine in murine pancreatic tumors. Biomolecules, 11(4), 526.
  • Twarda-Clapa, A., Olczak, A., Białkowska, A. M., & Koziołkiewicz, M. (2022). Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells, 11(8), 1312.
  • Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243.
  • Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X. U. E., Pyzik, R., ... & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911-916.
  • Wu, Q., Ouyang, Y., Kong, Y., Min, Y., Xiao, J., Li, S., ... & Zhang, L. (2021). Catechin inhibits the release of advanced glycation end products during glycated bovine serum albumin digestion and corresponding mechanisms in vitro. Journal of Agricultural and Food Chemistry, 69(31), 8807-8818.
  • Wu, X., Zhang, G., Hu, X., Pan, J., Liao, Y., & Ding, H. (2019). Inhibitory effect of epicatechin gallate on protein glycation. Food Research International, 122, 230-240.
  • Wu, Y., Dong, L., Liu, H., Niu, Z., Zhang, Y., & Wang, S. (2020). Effect of glycation on the structural modification of β-conglycinin and the formation of advanced glycation end products during the thermal processing of food. European Food Research and Technology, 246, 2259-2270.
  • Wu, Y., Wu, S., Sun, M., Nie, L., Zhang, Y., & Wang, S. (2023). Reduction of the levels of 5-hydroxymethylfurfural and advanced glycation end products in milk by the combination of high pressure and moderate heat pre-incubation. European Food Research and Technology, 249(4), 923-937.
  • Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174.
  • Xu, J., Chen, L. J., Yu, J., Wang, H. J., Zhang, F., Liu, Q., & Wu, J. (2018). Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cellular Physiology and Biochemistry, 48(2), 705-717.
  • Xu, Y., Toure, F., Qu, W., Lin, L., Song, F., Shen, X., ... & Yan, S. F. (2010). Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. Journal of Biological Chemistry, 285(30), 23233-23240.
  • Xue, C., Deng, P., Quan, W., Li, Y., He, Z., Qin, F., ... & Zeng, M. (2022). Ginger and curcumin can inhibit heterocyclic amines and advanced glycation end products in roast beef patties by quenching free radicals as revealed by electron paramagnetic resonance. Food Control, 138, 109038.
  • Yang, R., Wang, W. X., Chen, H. J., He, Z. C., & Jia, A. Q. (2018). The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers. Journal of Food and Drug Analysis, 26(1), 252–259.
  • Yu, L., Li, Q., Li, Y., Yang, Y., Guo, C., & Li, M. (2021). Impact of frozen storage duration of raw pork on the formation of advanced glycation end-products in meatballs. LWT, 146, 111481.
  • Yusufoğlu, B., Yaman, M., & Karakuş, E. (2020). Determination of the most potent precursors of advanced glycation end products in some high‐sugar containing traditional foods using high‐performance liquid chromatography. Journal of Food Processing and Preservation, 44(9), e14708.
  • Zhou, Q., Xu, H., Zhao, Y., Liu, B., Cheng, K. W., Chen, F., & Wang, M. (2022). 6-C-(E-Phenylethenyl)-naringenin, a styryl flavonoid, inhibits advanced glycation end product-induced inflammation by upregulation of Nrf2. Journal of Agricultural and Food Chemistry, 70(12), 3842-3851.
  • Zhu, Y., Ma, W. Q., Han, X. Q., Wang, Y., Wang, X., Liu, N. F. (2018). Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Scientific Reports, 8(1), 13730.

İşlenmiş Gıdaların İleri Glikasyon Son Ürünlerine Etkisi: Kanser Vakaları

Year 2024, Volume: 2 Issue: 1, 9 - 18, 28.03.2024

Abstract

İleri glikasyon son ürünleri (AGEs) canlı organizmalarda endojen ve eksojen olarak ortaya çıkan heterojenik bileşiklerdir. Bu bileşikler gıda işlenmesi sonucu ortaya çıkmakta olup, bireylerin beslenme ve diyet alışkanlıklarına göre değişmektedir. Günümüzde hızlı ve tempolu yaşam koşulları bireyleri işlenmiş gıda kullanımına yönlendirmektedir. Beslenme sonucunda alınan yüksek miktarda işlenmiş gıdalar metabolizmada inflamasyona neden olmaktadır. Inflamasyon ise metabolizmada ateroskleroz, diyabet, böbrek hastalıkları, kanser, karaciğer ve bazı nörodejeneratif hastalıkların oluşumuna neden olmaktadır. Bu derleme çalışmasının amacı ise AGE’ler ile bazı kanser türleri arasındaki ilişkiyi beslenme ve diyet alışkanlıklarına bağlı olarak detaylandırmaktır. Bu amaçla son yıllarda sık rastlanan meme kanseri, kolorektal kanser ve pankreas kanseri gibi kanser türleri ele alınmıştır. AGE’lerin hücrelerdeki reseptörlere bağlanarak belirli transkripsiyon faktörlerini etkileyip kanser hücrelerinin apoptozunu engellediği ve proliferasyonu desteklemektedir. Yapılan çalışmalar, beslenme ve diyet alışkanlıklarına göre AGE’lerin miktarlarını etkilediğini göstermektedir. Bu bağlamda fenolik bileşiklerin, vitaminlerin ve kısıtlı AGE alımının, bu ürünlerin etkilerini en aza indirmede önemli rol oynadığı gösterilmiştir. Bu derleme çalışması, AGE’lerin kanser üzerindeki etkilerini ortaya koyarak, bu ürünlerin oluşumunu etkileyen durumları detaylı bir şekilde incelemiştir. Çalışmalar değerlendirildiğinde, ileri glikasyon son ürünlerinin oluşumunun beslenme alışkanlıkları ve gıda işleme yöntemleriyle direkt olarak ilişkili olduğunu, kanser başta olmak üzere farklı hastalıklara neden olduğunu ve oluşumunun nasıl sınırlandırılabileceği vurgulanarak, kamu bilincinin oluşturulması hedeflenmiştir.

References

  • Abdulrahman, G. O., & Rahman, G. A. (2012). Epidemiology of breast cancer in Europe and Africa. Journal of Cancer Epidemiology, 2012.
  • Ahmad, S., & Farhan, M. (2016). Impact of non-enzymatic glycation in neurodegenerative diseases: Role of natural products in prevention. The benefits of natural products for neurodegenerative diseases, 125-151.
  • Ahmed, N. (2005). Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67(1), 3-21.
  • Alexander, D. D., Morimoto, L. M., Mink, P. J., & Lowe, K. A. (2010). Summary and meta-analysis of prospective studies of animal fat intake and breast cancer. Nutrition Research Reviews, 23(1), 169-179.
  • Alkan, Ş. B., Artaç, M., Aksoy, F., Belviranlı, M. M., Gürbilek, M., Çizmecioğlu, H. A., & Rakıcıoğlu, N. (2023). Are dietary and serum advanced glycation end-products related to inflammation and oxidation biomarkers in breast cancer patients: a follow-up study. Supportive Care in Cancer, 31(6), 334.
  • Alzahrani, S. M., Al Doghaither, H. A., & Al Ghafari, A. B. (2021). General insight into cancer: An overview of colorectal cancer. Molecular and Clinical Oncology, 15(6), 1-8.
  • Asadipooya, K., & Uy, E. M. (2019). Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: review of the literature. Journal of the Endocrine Society, 3(10), 1799-1818.
  • Azizian-Farsani, F., Abedpoor, N., Hasan Sheikhha, M., Gure, A. O., Nasr-Esfahani, M. H., & Ghaedi, K. (2020). Receptor for advanced glycation end products acts as a fuel to colorectal cancer development. Frontiers in Oncology, 10, 552283.
  • Bento, C., Goncalves, A. C., Silva, B., & Silva, L. R. (2022). Peach (Prunus persica): Phytochemicals and health benefits. Food Reviews International, 38(8), 1703-1734.
  • Bestil, D. N., & Uysal, H. (2023). Flavonoidler Ve Biyolojik Aktiviteleri. Antakya Veteriner Bilimleri Dergisi, 2(1), 49-55.
  • Boone, B. A., Orlichenko, L., Schapiro, N. E., Loughran, P., Gianfrate, G. C., Ellis, J. T., ... & Zeh, H. J. (2015). The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Therapy, 22(6), 326-334.
  • Burak, E., Ergene, E., & Hecer, C. (2022). Besin Hazırlama Ve Pişirme Yöntemlerinin İleri Glikasyon Son Ürünleri Üzerine Etkisi. Aydın Gastronomy, 6(2), 275-281.
  • Dariya, B., & Nagaraju, G. P. (2020). Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discovery Today, 25(9), 1614-1623.
  • Dong, L., Li, Y., Chen, Q., Liu, Y., Qiao, Z., Sang, S., & Liu, L. (2023). Research advances of advanced glycation end products in milk and dairy products: Formation, determination, control strategy and immunometabolism via gut microbiota. Food Chemistry, 135861.
  • Gill, V., Kumar, V., Singh, K., Kumar, A., & Kim, J. J. (2019). Advanced glycation end products (AGEs) may be a striking link between modern diet and health. Biomolecules, 9(12), 888.
  • Huang, S., Dong, X., Zhang, Y., Chen, Y., Yu, Y., Huang, M., & Zheng, Y. (2022). Formation of advanced glycation end products in raw and subsequently boiled broiler muscle: biological variation and effects of postmortem ageing and storage. Food Science and Human Wellness, 11(2), 255-262.
  • Huang, S., Huang, M., & Dong, X. (2023). Advanced glycation end products in meat during processing and storage: a review. Food Reviews International, 39(3), 1716-1732
  • International Agency for Research on Cancer (WHO). (2020). Global Cancer Observatory: Cancer Today. Retrieved from (Accessed December 22, 2023).
  • Jang, D. S., Lee, G. Y., Lee, Y. M., Kim, Y. S., Sun, H., Kim, D. H., & Kim, J. S. (2009). Flavan-3-ols having a γ-lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chemical and Pharmaceutical Bulletin, 57(4), 397-400.
  • Jangde, N., Ray, R., & Rai, V. (2020). RAGE and its ligands: from pathogenesis to therapeutics. Critical Reviews In Biochemistry and Molecular Biology, 55(6), 555-575.
  • Jariyapamornkoon, N., Yibchok-anun, S., & Adisakwattana, S. (2013). Inhibition of advanced glycation end products by red grape skin extract and its antioxidant activity. BMC complementary and alternative medicine, 13(1), 1-9.
  • Khan, M., Liu, H., Wang, J., & Sun, B. (2020). Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review. Food Research International, 130, 108933.
  • Kheirouri, S., & Alizadeh, M. (2020). Vitamin D and advanced glycation end products and their receptors. Pharmacological Research, 158, 104879.
  • Koçatakan, P., & Ataseven, H. (2021). Pankreas Kanseri. Ankara Eğitim ve Araştırma Hastanesi Tıp Dergisi, 54(1), 59-65.
  • Li, J., Wu, P. W., Zhou, Y., Dai, B., Zhang, P. F., Zhang, Y. H., & Shi, X. L. (2018). Rage induces hepatocellular carcinoma proliferation and sorafenib resistance by modulating autophagy. Cell Death & Disease, 9(2), 225.
  • Liang, H., Zhong, Y., Zhou, S., & Peng, L. (2011). Knockdown of RAGE expression inhibits colorectal cancer cell invasion and suppresses angiogenesis in vitro and in vivo. Cancer Letters, 313(1), 91-98.
  • Lo, C. Y., Li, S., Wang, Y., Tan, D., Pan, M. H., Sang, S., & Ho, C. T. (2008). Reactive dicarbonyl compounds and 5-(hydroxymethyl)-2-furfural in carbonated beverages containing high fructose corn syrup. Food Chemistry, 107(3), 1099-1105.
  • Luo, Y., Zhang, J., Ho, C. T., & Li, S. (2022). Management of Maillard reaction-derived reactive carbonyl species and advanced glycation end products by tea and tea polyphenols. Food Science and Human Wellness, 11(3), 557-567.
  • Lyu, C., Kong, W., Liu, Z., Wang, S., Zhao, P., Liang, K., ... & Du, Y. (2023). Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nature Biomedical Engineering, 1-18.
  • Maatallah, S., Dabbou, S., Castagna, A., Guizani, M., Hajlaoui, H., Ranieri, A. M., & Flamini, G. (2020). Prunus persica by-products: A source of minerals, phenols and volatile compounds. Scientia Horticulturae, 261, 109016.
  • Madduma Hewage, S. R. K. (2022). Lingonberry (Vaccinium vitis-idaea L.) supplementation protects against chronic kidney disease and improves fatty liver.
  • Mao, Z., Baker, J. R., Takeuchi, M., Hyogo, H., Tjønneland, A., Eriksen, A. K., ... & Fedirko, V. (2023). Prediagnostic serum glyceraldehyde‐derived advanced glycation end products and mortality among colorectal cancer patients. International Journal of Cancer, 152(11), 2257-2268.
  • Maxwell, K. N., & Nathanson, K. L. (2013). Common breast cancer risk variants in the post-COGS era: a comprehensive review. Breast Cancer Research, 15, 1-17.
  • Menini, S., Iacobini, C., de Latouliere, L., Manni, I., Vitale, M., Pilozzi, E., ... & Pugliese, G. (2020). Diabetes promotes invasive pancreatic cancer by increasing systemic and tumour carbonyl stress in KrasG12D/+ mice. Journal of Experimental & Clinical Cancer Research, 39(1), 1-16.
  • Milkovska‐Stamenova, S., Krieg, L., & Hoffmann, R. (2019). Products of early and advanced glycation in the soy milk proteome. Molecular Nutrition & Food research, 63(2), 1800725.
  • Millán-Laleona, A., Bielsa, F. J., Aranda-Cañada, E., Gómez-Rincón, C., Errea, P., & López, V. (2023). Antioxidant, Antidiabetic, and Anti-Obesity Properties of Apple Pulp Extracts (Malus domestica Bork): A Comparative Study of 15 Local and Commercial Cultivars from Spain. Biology, 12(7), 891.
  • Nedić, O., Rattan, S. I. S., Grune, T., & Trougakos, I. P. (2013). Molecular effects of advanced glycation end products on cell signalling pathways, ageing and pathophysiology. Free Radical Research, 47(sup1), 28-38. Nowotny, K., Schröter, D., Schreiner, M., & Grune, T. (2018). Dietary advanced glycation end products and their relevance for human health. Ageing Research Reviews, 47, 55-66.
  • Rabizadeh, S., Heidari, F., Karimi, R., Rajab, A., Rahimi‐Dehgolan, S., Yadegar, A., ... & Nakhjavani, M. (2023). Vitamin C supplementation lowers advanced glycation end products (AGEs) and malondialdehyde (MDA) in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled clinical trial. Food Science & Nutrition, 11(10), 5967-5977
  • Račkauskienė, I., Pukalskas, A., Fiore, A., Troise, A. D., & Venskutonis, P. R. (2019). Phytochemical‐rich antioxidant extracts of Vaccinium vitis‐idaea L. leaves inhibit the formation of toxic Maillard reaction products in food models. Journal of food science, 84(12), 3494-3503.
  • Rojas, A., Figueroa, H., & Morales, E. (2010). Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis, 31(3), 334-341
  • Rungratanawanich, W., Qu, Y., Wang, X., Essa, M. M., & Song, B. J. (2021). Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Experimental & molecular medicine, 53(2), 168-188.
  • Shahab, U., Ahmad, M. K., Mahdi, A. A., Waseem, M., Arif, B., & Ahmad, S. (2018, April). The receptor for advanced glycation end products: A fuel to pancreatic cancer. In Seminars in Cancer Biology (Vol. 49, pp. 37-43). Academic Press.
  • Sharaf, H., Matou-Nasri, S., Wang, Q., Rabhan, Z., Al-Eidi, H., Al Abdulrahman, A., & Ahmed, N. (2015). Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1852(3), 429-441.
  • Sharma, C., Kaur, A., Thind, S. S., Singh, B., & Raina, S. (2015). Advanced glycation End-products (AGEs): an emerging concern for processed food industries. Journal of Food Science and Technology, 52, 7561-7576.
  • Swami, P., O’connell, K. A., Thiyagarajan, S., Crawford, A., Patil, P., Radhakrishnan, P., ... & Leclerc, E. (2021). Inhibition of the receptor for advanced glycation End products enhances the cytotoxic effect of gemcitabine in murine pancreatic tumors. Biomolecules, 11(4), 526.
  • Twarda-Clapa, A., Olczak, A., Białkowska, A. M., & Koziołkiewicz, M. (2022). Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells, 11(8), 1312.
  • Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., & Jaremko, M. (2020). Important flavonoids and their role as a therapeutic agent. Molecules, 25(22), 5243.
  • Uribarri, J., Woodruff, S., Goodman, S., Cai, W., Chen, X. U. E., Pyzik, R., ... & Vlassara, H. (2010). Advanced glycation end products in foods and a practical guide to their reduction in the diet. Journal of the American Dietetic Association, 110(6), 911-916.
  • Wu, Q., Ouyang, Y., Kong, Y., Min, Y., Xiao, J., Li, S., ... & Zhang, L. (2021). Catechin inhibits the release of advanced glycation end products during glycated bovine serum albumin digestion and corresponding mechanisms in vitro. Journal of Agricultural and Food Chemistry, 69(31), 8807-8818.
  • Wu, X., Zhang, G., Hu, X., Pan, J., Liao, Y., & Ding, H. (2019). Inhibitory effect of epicatechin gallate on protein glycation. Food Research International, 122, 230-240.
  • Wu, Y., Dong, L., Liu, H., Niu, Z., Zhang, Y., & Wang, S. (2020). Effect of glycation on the structural modification of β-conglycinin and the formation of advanced glycation end products during the thermal processing of food. European Food Research and Technology, 246, 2259-2270.
  • Wu, Y., Wu, S., Sun, M., Nie, L., Zhang, Y., & Wang, S. (2023). Reduction of the levels of 5-hydroxymethylfurfural and advanced glycation end products in milk by the combination of high pressure and moderate heat pre-incubation. European Food Research and Technology, 249(4), 923-937.
  • Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174.
  • Xu, J., Chen, L. J., Yu, J., Wang, H. J., Zhang, F., Liu, Q., & Wu, J. (2018). Involvement of advanced glycation end products in the pathogenesis of diabetic retinopathy. Cellular Physiology and Biochemistry, 48(2), 705-717.
  • Xu, Y., Toure, F., Qu, W., Lin, L., Song, F., Shen, X., ... & Yan, S. F. (2010). Advanced glycation end product (AGE)-receptor for AGE (RAGE) signaling and up-regulation of Egr-1 in hypoxic macrophages. Journal of Biological Chemistry, 285(30), 23233-23240.
  • Xue, C., Deng, P., Quan, W., Li, Y., He, Z., Qin, F., ... & Zeng, M. (2022). Ginger and curcumin can inhibit heterocyclic amines and advanced glycation end products in roast beef patties by quenching free radicals as revealed by electron paramagnetic resonance. Food Control, 138, 109038.
  • Yang, R., Wang, W. X., Chen, H. J., He, Z. C., & Jia, A. Q. (2018). The inhibition of advanced glycation end-products by five fractions and three main flavonoids from Camellia nitidissima Chi flowers. Journal of Food and Drug Analysis, 26(1), 252–259.
  • Yu, L., Li, Q., Li, Y., Yang, Y., Guo, C., & Li, M. (2021). Impact of frozen storage duration of raw pork on the formation of advanced glycation end-products in meatballs. LWT, 146, 111481.
  • Yusufoğlu, B., Yaman, M., & Karakuş, E. (2020). Determination of the most potent precursors of advanced glycation end products in some high‐sugar containing traditional foods using high‐performance liquid chromatography. Journal of Food Processing and Preservation, 44(9), e14708.
  • Zhou, Q., Xu, H., Zhao, Y., Liu, B., Cheng, K. W., Chen, F., & Wang, M. (2022). 6-C-(E-Phenylethenyl)-naringenin, a styryl flavonoid, inhibits advanced glycation end product-induced inflammation by upregulation of Nrf2. Journal of Agricultural and Food Chemistry, 70(12), 3842-3851.
  • Zhu, Y., Ma, W. Q., Han, X. Q., Wang, Y., Wang, X., Liu, N. F. (2018). Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Scientific Reports, 8(1), 13730.
There are 61 citations in total.

Details

Primary Language English
Subjects Food Chemistry and Food Sensory Science
Journal Section Reviews
Authors

Sude Toydemir 0009-0003-2069-8434

Büşra Yusufoğlu 0000-0002-9158-9732

Publication Date March 28, 2024
Submission Date January 1, 2024
Acceptance Date February 12, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Toydemir, S., & Yusufoğlu, B. (2024). Effect of Processed Foods on Advanced Glycation End Products: Cancer Cases. ITU Journal of Food Science and Technology, 2(1), 9-18.