Review Article
BibTex RIS Cite

Dondurma Formülasyonunda Mikroalglerin Kullanım Olanaklarının Araştırılması

Year 2024, Volume: 2 Issue: 2, 47 - 56, 27.09.2024

Abstract

Yosunlar eski çağlardan beri insan ve hayvan beslenmesinde kullanılmaktadır. Son dönemde tüketicilerin sağlıklı ve besleyici gıdaya yönelik taleplerinin artması, pazarda fonksiyonel ürünlerin gelişmesine yol açmıştır. Özellikle mikroalg bazlı gıdalar ve takviyeler için küresel pazar büyük bir büyüme potansiyeline sahiptir. Mikroalgler yüksek oranda sindirilebilir proteinler, mineraller, vitaminler, diyet lifleri, karbonhidratlar ve yağlar içerdiğinden sağlıklı bir gıda takviyesi olarak kullanımları bir eğilim haline gelmiştir. Mikroalgler zengin kimyasal bileşimleri ve biyoaktif madde içerikleri nedeniyle endüstrinin birçok alanında kullanılmaktadır. Jelleştirici, kıvam artırıcı ve stabilize edici özellikleri agar, aljinat ve karragenan gibi katkı maddelerinin geliştirilmesine sebep olmuştur. Ayrıca mikroalgler gıda endüstrisinde gıda takviyesi ve fonksiyonel gıdalarda katkı maddesi ve renklendirici olarak kullanılmaktadır. Dondurma, renklendirici, emülgatör ve stabilizatör gibi katkı maddeleri içeren karmaşık yapısıyla en çok tüketilen sütlü tatlılardandır. Yüksek şeker ve yağ içeriğinin yanı sıra yapay renklendirici, stabilizatör ve emülgatör katkı maddelerinin kullanımı tüketici tercihlerini olumsuz yönde etkilemektedir. Bu nedenle son zamanlarda dondurmanın besin değerini artırarak yağ ve şeker yerine alternatif hammaddelerin kullanılmasına yönelik araştırmalar artmıştır. Mikroalgler antioksidan, antikanser ve antiviral gibi fonksiyonel özellikleri sayesinde sağlığı iyileştirmek için de kullanılmaktadırlar. Dondurmaya mikroalglerin ilavesi, dondurmayı zengin bir besin kaynağı haline getirmekle kalmayabilir, aynı zamanda doğal bir renklendirici olarak tercih edilmesini de sağlayabilir. Dondurma bileşenlerini azaltmak veya çıkarmak ya da standart formülasyona alışılmadık bileşenler eklemek, dondurmanın duyusal özelliklerini ve stabilitesini bozmamalıdır. Bu derleme, mikroalglerin besin içeriği ve bunların gıda endüstrisinde, özellikle dondurmadaki kullanım olanaklarına farklı bir bakış açısı getirmek amacıyla hazırlanmıştır.

References

  • Ahmad, A., & Ashraf, S. S. (2023). Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Research, 103185. https://doi.org/10.1016/j.algal.2023.103185.
  • Ak, B., Avsaroglu, E., Isik, O., Özyurt, G., Kafkas, E., & Etyemez, M. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. International Journal of Engineering Research and Application, 6(9), 30-38.
  • Akin, M. S. (2005). Effects of inulin and different sugar levels on viability of probiotic bacteria and the physical and sensory characteristics of probiotic fermented ice-cream. Milchwissenschaft, 60(3), 297-301.
  • Alam, T., Najam, L., & Al Harrasi, A. (2018). Extraction of natural pigments from marine algae. Journal of Agricultural & Marine Sciences, 23. https://doi.org/10.24200/jams.vol23iss1pp81-91.
  • Barkallah, M., Ben Atitallah, A., Hentati, F., Dammak, M., Hadrich, B., Fendri, I., Ayadi, M. A., Michaud, P. & Abdelkafi, S. (2019). Effect of Spirulina platensis biomass with high polysaccharides content on quality attributes of common Carp (Cyprinus carpio) and Common Barbel (Barbus barbus) fish burgers. Applied Sciences, 9(11), 2197. https://doi.org/10.3390/app9112197.
  • Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M. A., Fendri, I., Attia, H., & Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT, 84, 323-330. https://doi.org/10.1016/j.lwt.2017.05.071.
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304.
  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal research, 26, 161-171. https://doi.org/10.1016/j.algal.2017.07.017.
  • Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235, 719-728. https://doi.org/10.1007/s00217-012-1798-4.
  • Boukid, F., & Castellari, M. (2021). Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: a front-of-pack labeling perspective with a special focus on Spain. Foods, 10(1), 173. https://doi.org/10.3390/foods10010173.
  • Campos Assumpção de Amarante, M., Braga, A. R. C., Sala, L., & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602. https://doi.org/10.1016/j.foodres.2020.109602.
  • Canelli, G., Tarnutzer, C., Carpine, R., Neutsch, L., Bolten, C. J., Dionisi, F., & Mathys, A. (2020). Biochemical and nutritional evaluation of Chlorella and Auxenochlorella biomasses relevant for food application. Frontiers in Nutrition, 7, 565996. https://doi.org/10.3389/fnut.2020.565996.
  • Colonia, B. S. O., de Melo Pereira, G. V., de Carvalho, J. C., Karp, S. G., Rodrigues, C., Soccol, V. T., Fanka, L. S. & Soccol, C. R. (2023). Deodorization of algae biomass to overcome off-flavors and odor issues for developing new food products: Innovations, trends, and applications. Food Chemistry Advances, 100270. https://doi.org/10.1016/j.focha.2023.100270.
  • Costa, J. A. V., Lucas, B. F., Alvarenga, A. G. P., Moreira, J. B., & de Morais, M. G. (2021). Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides, 2(4), 759-772. https://doi.org/10.3390/polysaccharides2040046.
  • de Amarante, M. C. A., Braga, A. R. C., Sala, L., & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602. https://doi.org/10.1016/j.foodres.2020.109602.
  • da Silva Faresin, L., Devos, R. J. B., Reinehr, C. O., & Colla, L. M. (2022). Development of ice cream with reduction of sugar and fat by the addition of inulin, Spirulina platensis or phycocyanin. International Journal of Gastronomy and Food Science, 27, 100445. https://doi.org/10.1016/j.ijgfs.2021.100445.
  • De Bhowmick, G., Guieysse, B., Everett, D. W., Reis, M. G., & Thum, C. (2023). Novel source of microalgal lipids for infant formula. Trends in Food Science & Technology, 135, 1-13. https://doi.org/10.1016/j.tifs.2023.03.012.
  • De Jesus Raposo, M. F., de Morais, R. M. S. C., & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life sciences, 93(15), 479-486. https://doi.org/10.1016/j.lfs.2013.08.002.
  • De Oliveira, T. T. B., dos Reis, I. M., de Souza, M. B., da Silva Bispo, E., Maciel, L. F., Druzian, J. I., Tavares, P. P. L. G., de Oliveira Cerqueira, A., dos Santos Boa Morte, E., Glória, M. B. A., Lima Deus, V., & de Santana, L. R. R. (2021). Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT, 148, 111674. https://doi.org/10.1016/j.lwt.2021.111674.
  • Diaz, C. J., Douglas, K. J., Kang, K., Kolarik, A. L., Malinovski, R., Torres-Tiji, Y., Molino, J. V., Badary, A., & Mayfield, S. P. (2023). Developing algae as a sustainable food source. Frontiers in Nutrition, 9, 3147. https://doi.org/10.3389/fnut.2022.1029841.
  • Dineshbabu, G., Goswami, G., Kumar, R., Sinha, A., & Das, D. (2019). Microalgae–nutritious, sustainable aqua-and animal feed source. Journal of Functional Foods, 62, 103545. https://doi.org/10.1016/j.jff.2019.103545.
  • Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811. https://doi.org/10.1016/j.algal.2020.101811.
  • Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. https://doi.org/10.1016/j.nbt.2020.11.011.
  • Ferreira de Oliveira, A. P., & Bragotto, A. P. A. (2022). Microalgae-based products: Food and public health. Future Foods, 6, 100157. https://doi.org/10.1016/j.fufo.2022.100157.
  • Folarin, O., & Sharma, L. (2017). Algae as a functional food. International Journal of Home Science, 3(2), 166-170.
  • Genovese, A., Balivo, A., Salvati, A., & Sacchi, R. (2022). Functional ice cream health benefits and sensory implications. Food Research International, 111858. https://doi.org/10.1016/j.foodres.2022.111858.
  • Gremski, L. A., Coelho, A. L. K., Santos, J. S., Daguer, H., Molognoni, L., do Prado-Silva, L., Sant'Ana, A. S., Rocha, R. S., da Silva, M. C., Cruz, A. G., Azevedo, L., do Carmo, M. A. V., Wen, M., Zhang, L., & Granato, D. (2019). Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: manufacture, functional and sensory properties. Food Chemistry, 298, 125098. https://doi.org/10.1016/j.foodchem.2019.125098.
  • Guruvayoorappan, C., & Kuttan, G. (2007). β-Carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells. Integrative Cancer Therapies, 6(3), 258-270. https://doi.org/10.1177/1534735407305978.
  • Hadiyanto, H., Christwardana, M., Suzery, M., Sutanto, H., Nilamsari, A. M., & Yunanda, A. (2019). Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp. International Journal of Food Engineering, 15(5-6), 20180290. https://doi.org/0.1515/ijfe-2018-0290.
  • He, Y., Li, J., Guo, Z., & Chen, B. (2018). Synthesis of novel medium-long-medium type structured lipids from microalgae oil via two-step enzymatic reactions. Process Biochemistry, 68, 108-116. https://doi.org/10.1016/j.procbio.2018.02.005.
  • Hei, X., Liu, Z., Li, S., Wu, C., Jiao, B., Hu, H., Ma, X., Zhu, J., Adhikari, B., Wang, Q., & Shi, A. (2024). Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. International Journal of Biological Macromolecules, 257, 128183. https://doi.org/10.1016/j.ijbiomac.2023.128183.
  • Hlaing, S. A. A., Sadiq, M. B., & Anal, A. K. (2020). Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. Journal of Food Science and Technology, 57(3), 1090-1099. https://doi.org/10.1007/s13197-019-04144-3.
  • Hosseinkhani, N., McCauley, J. I., & Ralph, P. J. (2022). Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research, 64, 102696. https://doi.org/10.1016/j.algal.2022.102696.
  • Hussein, G., Nakamura, M., Zhao, Q., Iguchi, T., Goto, H., Sankawa, U., & Watanabe, H. (2005). Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biological and Pharmaceutical Bulletin, 28(1), 47-52. https://doi.org/10.1248/bpb.28.47.
  • Imchen, T., & Singh, K. S. (2023). Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. Algal Research, 69, 102898. https://doi.org/10.1016/j.algal.2022.102898.
  • Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 112737. https://doi.org/10.1016/j.foodres.2023.112737.
  • Jin, Y., Gu, Z., Cheng, L., Li, C., Li, Z., & Hong, Y. (2024). Physicochemical characterization of debranched waxy rice starches and their effect on the quality of low-fat ice cream mixtures. Food Bioscience, 57, 103485. https://doi.org/10.1016/j.fbio.2023.103485.
  • Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667-4675. https://doi.org/10.1021/jf400819p.
  • Letras, P., Oliveira, S., Varela, J., Nunes, M. C., & Raymundo, A. (2022). 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. Algal Research, 68, 102863. https://doi.org/10.1016/j.algal.2022.102863.
  • Matos, Â. P., Novelli, E., & Tribuzi, G. (2022). Use of algae as food ingredient: sensory acceptance and commercial products. Frontiers in Food Science and Technology, 2, 989801. https://doi.org/10.3389/frfst.2022.989801.
  • Mehariya, S., Goswami, R. K., Karthikeysan, O. P., & Verma, P. (2021). Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280, 130553. https://doi.org/10.1016/j.chemosphere.2021.130553.
  • Mendes, M. C., Navalho, S., Ferreira, A., Paulino, C., Figueiredo, D., Silva, D., Gao, F., Gama, F., Bombo, G., Jacinto, R., Aveiro, S. S., Schulze, P. S. C., Gonçalves, A. T., Pereira, H., Gouveia, L., Patarra, R. F., Abreu, M. H., Silva, J. L., Navalho, J., Varela, J. C. S., & Speranza, L. G. (2022). Algae as food in Europe: An overview of species diversity and their application. Foods, 11(13), 1871. https://doi.org/10.3390/foods11131871.
  • Narala, V. R., Orlovs, I., Jugbarde, M. A., & Masin, M. (2022). Inulin as a fat replacer in pea protein vegan ice cream and its influence on textural properties and sensory attributes. Applied Food Research, 2(1), 100066. https://doi.org/10.1016/j.afres.2022.100066.
  • Nayar, S., Loo, M. G. K., Du, Z. (2023). Sustainably sourced natural colour pigments from cultivated native marine algae for the plant-based meat industry. AgriFutures.
  • Niccolai, A., Zittelli, G. C., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42, 101617. https://doi.org/10.1016/j.algal.2019.101617.
  • Özçimen, D., İnan, B., Koçer, A. T., & Vehapi, M. (2018). Bioeconomic assessment of microalgal production. Microalgal Biotechnology, 195-214. https://doi.org/10.5772/intechopen.73702.
  • Öztürk, H. İ., Demirci, T., & Akın, N. (2018). Production of functional probiotic ice creams with white and dark blue fruits of Myrtus communis: The comparison of the prebiotic potentials on Lactobacillus casei 431 and functional characteristics. LWT, 90, 339-345. https://doi.org/10.1016/j.lwt.2017.12.049.
  • Ravi, B. G., Johnson, J., & Palanisamy, A. (2023). Algal pigments and its applications - a review. International Journal of Creative Research Thoughts, 11(3), h568-h573.
  • Samani, S. A., Jafari, M., Sahafi, S. M., & Roohinejad, S. (2021). Applications of Algae and Algae Extracts in Human Food and Feed. In G. Rajauria & Y. V. Yuan (Eds.), Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives (pp. 465-486). John Wiley & Sons Inc.. https://doi.org/10.1002/9781119542650.
  • Sasa, A., Şentürk, F., Üstündağ, Y., & Erem, F. (2020). Alglerin gıda veya gıda bileşeni olarak kullanımı ve sağlık üzerine etkileri. Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, 2(2), 97-110.
  • Szmejda, K., Duliński, R., Byczyński, Ł., Karbowski, A., Florczak, T., & Żyła, K. (2018). Analysis of the selected antioxidant compounds in ice cream supplemented with Spirulina (Arthrospira platensis) extract. Biotechnology and Food Science, 82(1), 41-48.
  • Tiepo, C. B. V., Gottardo, F. M., Mortari, L. M., Bertol, C. D., Reinehr, C. O., & Colla, L. M. (2021). Addition of Spirulina platensis in handmade ice cream: Phisicochemical and sensory effects. Brazilian Journal of Development, 7, 88106-88123. https://doi.org/10.34117/bjdv7n9-121.
  • Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology Advances, 41, 107536. https://doi.org/10.1016/j.biotechadv.2020.107536.
  • Turkish Food Codex (2023). Turkish Food Codex Regulation on food additives. Retrieved March 24, 2023 from: www.resmigazete.gov.tr
  • Uzuner, S., & Haznedar, A. (2020). Healthy supplement for functional food: Microalgae. Sinop University Journal of Natural Sciences, 5(2), 212-226. https://doi.org/10.33484/sinopfbd.756316.
  • Villaró-Cos, S., Sánchez, J. L. G., Acién, G., & Lafarga, T. (2023). Research trends and current requirements and challenges in the industrial production of spirulina as a food source. Trends in Food Science & Technology, 104280. https://doi.org/10.1016/j.tifs.2023.104280.
  • Wang, M., Zhou, J., Tavares, J., Pinto, C. A., Saraiva, J. A., Prieto, M. A., Cao, H., Xiao, J., Simal-Gandara, J., & Barba, F. J. (2023). Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Critical Reviews in Food Science and Nutrition, 63(26), 8357-8374. https://doi.org/10.1080/10408398.2022.2054939.
  • Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application Of Spirulina Platensis On Ice Cream And Soft Cheese With Respect To Their Nutritional And Sensory Perspectives. Jurnal Teknologi, 78(4-2), 245-251.
  • Wu, G., Zhuang, D., Chew, K. W., Ling, T. C., Khoo, K. S., Van Quyen, D., Feng, S., & Show, P. L. (2022). Current status and future trends in removal, control, and mitigation of algae food safety risks for human consumption. Molecules, 27(19), 6633. https://doi.org/10.3390/molecules27196633.
  • Yosefiyan, M., Mahdian, E., Kordjazi, A., & Hesarinejad, M. A. (2024). Freeze-dried persimmon peel: A potential ingredient for functional ice cream. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25488.
  • Zaaboul, F., Tian, T., Borah, P. K., & Di Bari, V. (2024). Thermally treated peanut oil bodies as a fat replacer for ice cream: Physicochemical and rheological properties. Food Chemistry, 436, 137630. https://doi.org/10.1016/j.foodchem.2023.137630.
  • Zubia, M., Robledo, D., & Freile-Pelegrin, Y. (2007). Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. Journal of Applied Phycology, 19, 449-458. https://doi.org/10.1007/s10811-006-9152-5.

Investigation of the Use of Microalgae in Ice Cream Formulation

Year 2024, Volume: 2 Issue: 2, 47 - 56, 27.09.2024

Abstract

Seaweeds have been used in human and animal nutrition since ancient times. Recently, the increase in consumer demands for healthy and nutritious food has led to the development of functional products in the market. The global market, especially for microalgae-based foods and supplements, has great growth potential. Since microalgae contain highly digestible proteins, minerals, vitamins, dietary fibres, carbohydrates and fats, their use as a healthy food supplement has become a trend. Microalgae find extensive applications across various industries owing to their abundant chemical composition and bioactive substance levels. Their abilities in gelling, thickening, and stabilizing have notably facilitated the creation of food additives like agar, alginate, and carrageenan. Furthermore, microalgae serve roles in the food sector as dietary supplements, additives, and natural colorants for functional food products. Ice cream is the most consumed milk dessert with a complex structure containing additives such as colorants, emulsifiers and stabilizers. In addition to its high sugar and fat content, the use of synthetic colorant, stabilizer and emulsifier additives negatively affects consumer preferences. For this reason, research on the use of alternative raw materials to replace fat and sugar by increasing the nutritional value of ice cream has increased recently. Microalgae are also used to improve health due to its functional properties such as antioxidant, anticancer and antiviral activities. The addition of microalgae to ice cream not only makes ice cream a rich source of nutrients, but also increases its preference as a natural colorant. Reducing or removing ice cream ingredients or adding unusual ingredients to the standard formulation should not impair the sensory properties and storage stability of the ice cream. This review has been prepared to bring a different perspective on the nutritional content of microalgae and their uses in the food industry, particularly in ice cream.

References

  • Ahmad, A., & Ashraf, S. S. (2023). Sustainable food and feed sources from microalgae: Food security and the circular bioeconomy. Algal Research, 103185. https://doi.org/10.1016/j.algal.2023.103185.
  • Ak, B., Avsaroglu, E., Isik, O., Özyurt, G., Kafkas, E., & Etyemez, M. (2016). Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis. International Journal of Engineering Research and Application, 6(9), 30-38.
  • Akin, M. S. (2005). Effects of inulin and different sugar levels on viability of probiotic bacteria and the physical and sensory characteristics of probiotic fermented ice-cream. Milchwissenschaft, 60(3), 297-301.
  • Alam, T., Najam, L., & Al Harrasi, A. (2018). Extraction of natural pigments from marine algae. Journal of Agricultural & Marine Sciences, 23. https://doi.org/10.24200/jams.vol23iss1pp81-91.
  • Barkallah, M., Ben Atitallah, A., Hentati, F., Dammak, M., Hadrich, B., Fendri, I., Ayadi, M. A., Michaud, P. & Abdelkafi, S. (2019). Effect of Spirulina platensis biomass with high polysaccharides content on quality attributes of common Carp (Cyprinus carpio) and Common Barbel (Barbus barbus) fish burgers. Applied Sciences, 9(11), 2197. https://doi.org/10.3390/app9112197.
  • Barkallah, M., Dammak, M., Louati, I., Hentati, F., Hadrich, B., Mechichi, T., Ayadi, M. A., Fendri, I., Attia, H., & Abdelkafi, S. (2017). Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT, 84, 323-330. https://doi.org/10.1016/j.lwt.2017.05.071.
  • Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), 304. https://doi.org/10.3390/md17050304.
  • Batista, A. P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici, M. R., Sousa, I., & Raymundo, A. (2017). Microalgae biomass as an alternative ingredient in cookies: Sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal research, 26, 161-171. https://doi.org/10.1016/j.algal.2017.07.017.
  • Beheshtipour, H., Mortazavian, A. M., Haratian, P., & Darani, K. K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235, 719-728. https://doi.org/10.1007/s00217-012-1798-4.
  • Boukid, F., & Castellari, M. (2021). Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: a front-of-pack labeling perspective with a special focus on Spain. Foods, 10(1), 173. https://doi.org/10.3390/foods10010173.
  • Campos Assumpção de Amarante, M., Braga, A. R. C., Sala, L., & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602. https://doi.org/10.1016/j.foodres.2020.109602.
  • Canelli, G., Tarnutzer, C., Carpine, R., Neutsch, L., Bolten, C. J., Dionisi, F., & Mathys, A. (2020). Biochemical and nutritional evaluation of Chlorella and Auxenochlorella biomasses relevant for food application. Frontiers in Nutrition, 7, 565996. https://doi.org/10.3389/fnut.2020.565996.
  • Colonia, B. S. O., de Melo Pereira, G. V., de Carvalho, J. C., Karp, S. G., Rodrigues, C., Soccol, V. T., Fanka, L. S. & Soccol, C. R. (2023). Deodorization of algae biomass to overcome off-flavors and odor issues for developing new food products: Innovations, trends, and applications. Food Chemistry Advances, 100270. https://doi.org/10.1016/j.focha.2023.100270.
  • Costa, J. A. V., Lucas, B. F., Alvarenga, A. G. P., Moreira, J. B., & de Morais, M. G. (2021). Microalgae polysaccharides: an overview of production, characterization, and potential applications. Polysaccharides, 2(4), 759-772. https://doi.org/10.3390/polysaccharides2040046.
  • de Amarante, M. C. A., Braga, A. R. C., Sala, L., & Kalil, S. J. (2020). Colour stability and antioxidant activity of C-phycocyanin-added ice creams after in vitro digestion. Food Research International, 137, 109602. https://doi.org/10.1016/j.foodres.2020.109602.
  • da Silva Faresin, L., Devos, R. J. B., Reinehr, C. O., & Colla, L. M. (2022). Development of ice cream with reduction of sugar and fat by the addition of inulin, Spirulina platensis or phycocyanin. International Journal of Gastronomy and Food Science, 27, 100445. https://doi.org/10.1016/j.ijgfs.2021.100445.
  • De Bhowmick, G., Guieysse, B., Everett, D. W., Reis, M. G., & Thum, C. (2023). Novel source of microalgal lipids for infant formula. Trends in Food Science & Technology, 135, 1-13. https://doi.org/10.1016/j.tifs.2023.03.012.
  • De Jesus Raposo, M. F., de Morais, R. M. S. C., & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life sciences, 93(15), 479-486. https://doi.org/10.1016/j.lfs.2013.08.002.
  • De Oliveira, T. T. B., dos Reis, I. M., de Souza, M. B., da Silva Bispo, E., Maciel, L. F., Druzian, J. I., Tavares, P. P. L. G., de Oliveira Cerqueira, A., dos Santos Boa Morte, E., Glória, M. B. A., Lima Deus, V., & de Santana, L. R. R. (2021). Microencapsulation of Spirulina sp. LEB-18 and its incorporation in chocolate milk: Properties and functional potential. LWT, 148, 111674. https://doi.org/10.1016/j.lwt.2021.111674.
  • Diaz, C. J., Douglas, K. J., Kang, K., Kolarik, A. L., Malinovski, R., Torres-Tiji, Y., Molino, J. V., Badary, A., & Mayfield, S. P. (2023). Developing algae as a sustainable food source. Frontiers in Nutrition, 9, 3147. https://doi.org/10.3389/fnut.2022.1029841.
  • Dineshbabu, G., Goswami, G., Kumar, R., Sinha, A., & Das, D. (2019). Microalgae–nutritious, sustainable aqua-and animal feed source. Journal of Functional Foods, 62, 103545. https://doi.org/10.1016/j.jff.2019.103545.
  • Durmaz, Y., Kilicli, M., Toker, O. S., Konar, N., Palabiyik, I., & Tamtürk, F. (2020). Using spray-dried microalgae in ice cream formulation as a natural colorant: Effect on physicochemical and functional properties. Algal Research, 47, 101811. https://doi.org/10.1016/j.algal.2020.101811.
  • Fernández, F. G. A., Reis, A., Wijffels, R. H., Barbosa, M., Verdelho, V., & Llamas, B. (2021). The role of microalgae in the bioeconomy. New Biotechnology, 61, 99-107. https://doi.org/10.1016/j.nbt.2020.11.011.
  • Ferreira de Oliveira, A. P., & Bragotto, A. P. A. (2022). Microalgae-based products: Food and public health. Future Foods, 6, 100157. https://doi.org/10.1016/j.fufo.2022.100157.
  • Folarin, O., & Sharma, L. (2017). Algae as a functional food. International Journal of Home Science, 3(2), 166-170.
  • Genovese, A., Balivo, A., Salvati, A., & Sacchi, R. (2022). Functional ice cream health benefits and sensory implications. Food Research International, 111858. https://doi.org/10.1016/j.foodres.2022.111858.
  • Gremski, L. A., Coelho, A. L. K., Santos, J. S., Daguer, H., Molognoni, L., do Prado-Silva, L., Sant'Ana, A. S., Rocha, R. S., da Silva, M. C., Cruz, A. G., Azevedo, L., do Carmo, M. A. V., Wen, M., Zhang, L., & Granato, D. (2019). Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: manufacture, functional and sensory properties. Food Chemistry, 298, 125098. https://doi.org/10.1016/j.foodchem.2019.125098.
  • Guruvayoorappan, C., & Kuttan, G. (2007). β-Carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells. Integrative Cancer Therapies, 6(3), 258-270. https://doi.org/10.1177/1534735407305978.
  • Hadiyanto, H., Christwardana, M., Suzery, M., Sutanto, H., Nilamsari, A. M., & Yunanda, A. (2019). Effects of carrageenan and chitosan as coating materials on the thermal degradation of microencapsulated phycocyanin from Spirulina sp. International Journal of Food Engineering, 15(5-6), 20180290. https://doi.org/0.1515/ijfe-2018-0290.
  • He, Y., Li, J., Guo, Z., & Chen, B. (2018). Synthesis of novel medium-long-medium type structured lipids from microalgae oil via two-step enzymatic reactions. Process Biochemistry, 68, 108-116. https://doi.org/10.1016/j.procbio.2018.02.005.
  • Hei, X., Liu, Z., Li, S., Wu, C., Jiao, B., Hu, H., Ma, X., Zhu, J., Adhikari, B., Wang, Q., & Shi, A. (2024). Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. International Journal of Biological Macromolecules, 257, 128183. https://doi.org/10.1016/j.ijbiomac.2023.128183.
  • Hlaing, S. A. A., Sadiq, M. B., & Anal, A. K. (2020). Enhanced yield of Scenedesmus obliquus biomacromolecules through medium optimization and development of microalgae based functional chocolate. Journal of Food Science and Technology, 57(3), 1090-1099. https://doi.org/10.1007/s13197-019-04144-3.
  • Hosseinkhani, N., McCauley, J. I., & Ralph, P. J. (2022). Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Research, 64, 102696. https://doi.org/10.1016/j.algal.2022.102696.
  • Hussein, G., Nakamura, M., Zhao, Q., Iguchi, T., Goto, H., Sankawa, U., & Watanabe, H. (2005). Antihypertensive and neuroprotective effects of astaxanthin in experimental animals. Biological and Pharmaceutical Bulletin, 28(1), 47-52. https://doi.org/10.1248/bpb.28.47.
  • Imchen, T., & Singh, K. S. (2023). Marine algae colorants: Antioxidant, anti-diabetic properties and applications in food industry. Algal Research, 69, 102898. https://doi.org/10.1016/j.algal.2022.102898.
  • Ji, L., Qiu, S., Wang, Z., Zhao, C., Tang, B., Gao, Z., & Fan, J. (2023). Phycobiliproteins from algae: Current updates in sustainable production and applications in food and health. Food Research International, 112737. https://doi.org/10.1016/j.foodres.2023.112737.
  • Jin, Y., Gu, Z., Cheng, L., Li, C., Li, Z., & Hong, Y. (2024). Physicochemical characterization of debranched waxy rice starches and their effect on the quality of low-fat ice cream mixtures. Food Bioscience, 57, 103485. https://doi.org/10.1016/j.fbio.2023.103485.
  • Kadam, S. U., Tiwari, B. K., & O’Donnell, C. P. (2013). Application of novel extraction technologies for bioactives from marine algae. Journal of Agricultural and Food Chemistry, 61(20), 4667-4675. https://doi.org/10.1021/jf400819p.
  • Letras, P., Oliveira, S., Varela, J., Nunes, M. C., & Raymundo, A. (2022). 3D printed gluten-free cereal snack with incorporation of Spirulina (Arthrospira platensis) and/or Chlorella vulgaris. Algal Research, 68, 102863. https://doi.org/10.1016/j.algal.2022.102863.
  • Matos, Â. P., Novelli, E., & Tribuzi, G. (2022). Use of algae as food ingredient: sensory acceptance and commercial products. Frontiers in Food Science and Technology, 2, 989801. https://doi.org/10.3389/frfst.2022.989801.
  • Mehariya, S., Goswami, R. K., Karthikeysan, O. P., & Verma, P. (2021). Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280, 130553. https://doi.org/10.1016/j.chemosphere.2021.130553.
  • Mendes, M. C., Navalho, S., Ferreira, A., Paulino, C., Figueiredo, D., Silva, D., Gao, F., Gama, F., Bombo, G., Jacinto, R., Aveiro, S. S., Schulze, P. S. C., Gonçalves, A. T., Pereira, H., Gouveia, L., Patarra, R. F., Abreu, M. H., Silva, J. L., Navalho, J., Varela, J. C. S., & Speranza, L. G. (2022). Algae as food in Europe: An overview of species diversity and their application. Foods, 11(13), 1871. https://doi.org/10.3390/foods11131871.
  • Narala, V. R., Orlovs, I., Jugbarde, M. A., & Masin, M. (2022). Inulin as a fat replacer in pea protein vegan ice cream and its influence on textural properties and sensory attributes. Applied Food Research, 2(1), 100066. https://doi.org/10.1016/j.afres.2022.100066.
  • Nayar, S., Loo, M. G. K., Du, Z. (2023). Sustainably sourced natural colour pigments from cultivated native marine algae for the plant-based meat industry. AgriFutures.
  • Niccolai, A., Zittelli, G. C., Rodolfi, L., Biondi, N., & Tredici, M. R. (2019). Microalgae of interest as food source: Biochemical composition and digestibility. Algal Research, 42, 101617. https://doi.org/10.1016/j.algal.2019.101617.
  • Özçimen, D., İnan, B., Koçer, A. T., & Vehapi, M. (2018). Bioeconomic assessment of microalgal production. Microalgal Biotechnology, 195-214. https://doi.org/10.5772/intechopen.73702.
  • Öztürk, H. İ., Demirci, T., & Akın, N. (2018). Production of functional probiotic ice creams with white and dark blue fruits of Myrtus communis: The comparison of the prebiotic potentials on Lactobacillus casei 431 and functional characteristics. LWT, 90, 339-345. https://doi.org/10.1016/j.lwt.2017.12.049.
  • Ravi, B. G., Johnson, J., & Palanisamy, A. (2023). Algal pigments and its applications - a review. International Journal of Creative Research Thoughts, 11(3), h568-h573.
  • Samani, S. A., Jafari, M., Sahafi, S. M., & Roohinejad, S. (2021). Applications of Algae and Algae Extracts in Human Food and Feed. In G. Rajauria & Y. V. Yuan (Eds.), Recent Advances in Micro and Macroalgal Processing: Food and Health Perspectives (pp. 465-486). John Wiley & Sons Inc.. https://doi.org/10.1002/9781119542650.
  • Sasa, A., Şentürk, F., Üstündağ, Y., & Erem, F. (2020). Alglerin gıda veya gıda bileşeni olarak kullanımı ve sağlık üzerine etkileri. Uluslararası Mühendislik Tasarım ve Teknoloji Dergisi, 2(2), 97-110.
  • Szmejda, K., Duliński, R., Byczyński, Ł., Karbowski, A., Florczak, T., & Żyła, K. (2018). Analysis of the selected antioxidant compounds in ice cream supplemented with Spirulina (Arthrospira platensis) extract. Biotechnology and Food Science, 82(1), 41-48.
  • Tiepo, C. B. V., Gottardo, F. M., Mortari, L. M., Bertol, C. D., Reinehr, C. O., & Colla, L. M. (2021). Addition of Spirulina platensis in handmade ice cream: Phisicochemical and sensory effects. Brazilian Journal of Development, 7, 88106-88123. https://doi.org/10.34117/bjdv7n9-121.
  • Torres-Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology Advances, 41, 107536. https://doi.org/10.1016/j.biotechadv.2020.107536.
  • Turkish Food Codex (2023). Turkish Food Codex Regulation on food additives. Retrieved March 24, 2023 from: www.resmigazete.gov.tr
  • Uzuner, S., & Haznedar, A. (2020). Healthy supplement for functional food: Microalgae. Sinop University Journal of Natural Sciences, 5(2), 212-226. https://doi.org/10.33484/sinopfbd.756316.
  • Villaró-Cos, S., Sánchez, J. L. G., Acién, G., & Lafarga, T. (2023). Research trends and current requirements and challenges in the industrial production of spirulina as a food source. Trends in Food Science & Technology, 104280. https://doi.org/10.1016/j.tifs.2023.104280.
  • Wang, M., Zhou, J., Tavares, J., Pinto, C. A., Saraiva, J. A., Prieto, M. A., Cao, H., Xiao, J., Simal-Gandara, J., & Barba, F. J. (2023). Applications of algae to obtain healthier meat products: A critical review on nutrients, acceptability and quality. Critical Reviews in Food Science and Nutrition, 63(26), 8357-8374. https://doi.org/10.1080/10408398.2022.2054939.
  • Winarni Agustini, T., Farid Ma’ruf, W., Widayat, W., Suzery, M., Hadiyanto, H., & Benjakul, S. (2016). Application Of Spirulina Platensis On Ice Cream And Soft Cheese With Respect To Their Nutritional And Sensory Perspectives. Jurnal Teknologi, 78(4-2), 245-251.
  • Wu, G., Zhuang, D., Chew, K. W., Ling, T. C., Khoo, K. S., Van Quyen, D., Feng, S., & Show, P. L. (2022). Current status and future trends in removal, control, and mitigation of algae food safety risks for human consumption. Molecules, 27(19), 6633. https://doi.org/10.3390/molecules27196633.
  • Yosefiyan, M., Mahdian, E., Kordjazi, A., & Hesarinejad, M. A. (2024). Freeze-dried persimmon peel: A potential ingredient for functional ice cream. Heliyon, 10(3). https://doi.org/10.1016/j.heliyon.2024.e25488.
  • Zaaboul, F., Tian, T., Borah, P. K., & Di Bari, V. (2024). Thermally treated peanut oil bodies as a fat replacer for ice cream: Physicochemical and rheological properties. Food Chemistry, 436, 137630. https://doi.org/10.1016/j.foodchem.2023.137630.
  • Zubia, M., Robledo, D., & Freile-Pelegrin, Y. (2007). Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. Journal of Applied Phycology, 19, 449-458. https://doi.org/10.1007/s10811-006-9152-5.
There are 62 citations in total.

Details

Primary Language English
Subjects Dairy Technology
Journal Section Reviews
Authors

Büşra Yalçın 0009-0009-1594-3136

Senem Kamiloğlu Beştepe 0000-0003-3902-4360

Meral Kılıç Akyılmaz 0000-0002-2068-0336

Publication Date September 27, 2024
Submission Date February 26, 2024
Acceptance Date April 10, 2024
Published in Issue Year 2024 Volume: 2 Issue: 2

Cite

APA Yalçın, B., Kamiloğlu Beştepe, S., & Kılıç Akyılmaz, M. (2024). Investigation of the Use of Microalgae in Ice Cream Formulation. ITU Journal of Food Science and Technology, 2(2), 47-56.