Research Article
BibTex RIS Cite
Year 2020, Volume: 4 Issue: 3, 255 - 261, 15.09.2020
https://doi.org/10.31015/jaefs.2020.3.3

Abstract

References

  • Amarasinghe, H., Weerakkody, N. S. and Waisundara, V. Y., (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition 6: 659–665. Doi: https://doi.org/10.1002/fsn3.605
  • Ayed, L., Ben Abid, S. and Hamdi, M., (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium. Annals of Microbiology 67: 111–121. Doi: https://doi.org/10.1007/s13213-016-1242-2
  • Ayed, L. and Hamdi, M., (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology 65: 2293–2299. Doi: https://doi.org/10.1007/s13213-015-1071-8
  • Battikh, H., Bakhrouf, A. and Ammar, E., (2012). Antimicrobial effect of Kombucha analogues. LWT - Food Science and Technology 47: 71–77. Doi: https://doi.org/10.1016/j.lwt.2011.12.033
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C., (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft Und Technologie 28: 25–30.
  • Bravo, L., Goya, L. and Lecumberri, E., (2007). LC / MS characterization of phenolic constituents of mate ( Ilex paraguariensis , St . Hil .) and its antioxidant activity compared to commonly consumed beverages. Food Research International 40: 393–405. Doi: https://doi.org/10.1016/j.foodres.2006.10.016
  • Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D. and Gachhui, R., (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63–72. Doi: https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
  • Cvetanovic, A., Svarc-Gajic, J., Maskovic, P., Savic, S. and Nikolic, L., (2015). Antioxidant and biological activity of chamomile extracts obtained by different techniques : perspective of using superheated water for isolation of biologically active compounds. Industrial Crops and Products 65: 582–591. Doi: https://doi.org/10.1016/j.indcrop.2014.09.044
  • De Filippis, F., Troise, A. D., Vitaglione, P. and Ercolini, D., (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology 73: 11–16. Doi: https://doi.org/10.1016/j.fm.2018.01.008
  • Guo, C., Yang, J., Wei, J., Li, Y., Xu, J. and Jiang, Y., (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research 23: 1719–1726. Doi: https://doi.org/10.1016/j.nutres.2003.08.005
  • Hall, M. B., 2013. Efficacy of reducing sugar and phenol-sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology 185: 94–100. Doi: https://doi.org/10.1016/j.anifeedsci.2013.06.008
  • Hrnjez, D., Vaštag, Milanović, S., Vukić, V., Iličić, M., Popović, L. and Kanurić, K., (2014). The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. Journal of Functional Foods 10: 336–345. Doi: https://doi.org/10.1016/j.jff.2014.06.016
  • Jayabalan, R., Marimuthu, S. and Swaminathan, K., (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102: 392–398.
  • Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M. and Swaminathan, K., (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109: 227–234. Doi: https://doi.org/10.1016/j.foodchem.2007.12.037
  • Kanurić, K. G., Milanović, S. D., Ikonić, B. B., Lončar, E. S., Iličić, M. D., Vukić, V. R. and Vukić, D. V., (2018). Kinetics of lactose fermentation in milk with kombucha starter. Journal of Food and Drug Analysis 6–11. Doi: https://doi.org/10.1016/j.jfda.2018.02.002
  • Lončar, E. S., Malbaša, R. V. and Kolarov, L. A., (2001). Metabolic activity of tea fungus on molasses as a source of carbon. APTEFF 1172: 21–26.
  • Malbaša, R., Vitas, J., Lončar, E., Grahovac, J. and Milanović, S., (2014). Optimisation of the antioxidant activity of kombucha fermented milk products. Czech Journal of Food Sciences 32: 477–484.
  • Malbaša, R. V., Lončar, E. S., Vitas, J. S. and Čanadanović-Brunet, J. M., (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry 127: 1727–1731. Doi: https://doi.org/10.1016/j.foodchem.2011.02.048
  • Malbaša, R. V., Milanović, S. D., Lončar, E. S., Djurić, M. S., Carić, M. D., Iličić, M. D. and Kolarov, L., (2009). Milk-based beverages obtained by Kombucha application. Food Chemistry 112: 178–184. Doi: https://doi.org/10.1016/j.foodchem.2008.05.055
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., (1999). Antioxidant Activity Applying an Improved Abts Radical Cation Decolarization Assay 26: 1231–1237. Doi: https://doi.org/10.1016/S0891-5849(98)00315-3
  • Singleton, V. L. and Rossi, J. A. Jr., (1965). Colorimetry of Total Phenolics with Acid Reagents. American Journal of Enology and Viticulture 16:144–158.
  • Siró, I., Kápolna, E., Kápolna, B. and Lugasi, A., (2008). Functional food. Product development, marketing and consumer acceptance-A review. Appetite 51: 456–467. Doi: https://doi.org/10.1016/j.appet.2008.05.060
  • Vázquez-Cabral, B. D., Larrosa-Pérez, M., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., González-Laredo, R. F., Rutiaga-Quiñones, J. G. and Rocha-Guzmán, N. E., (2017). Oak kombucha protects against oxidative stress and inflammatory processes. Chemico-Biological Interactions 272: 1–9. Doi: https://doi.org/10.1016/j.cbi.2017.05.001
  • Velićanski, A. S., Cvetković, D. D., Markov, S. L., Tumbas Šaponjac, V. T. and Vulić, J. J., (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa offi cinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology 52: 420–429. Doi: https://doi.org/10.17113/ftb.52.04.14.3611
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P. and Taillandier, P., (2018). Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science 83: 580–588. Doi: https://doi.org/10.1111/1750-3841.14068
  • Vitas, J. S., Cvetanović, A. D., Mašković, P. Z., Švarc-Gajić, J. V. and Malbaša, R. V., (2018). Chemical composition and biological activity of novel types of kombucha beverages with yarrow. Journal of Functional Foods 44: 95–102. Doi: https://doi.org/10.1016/j.jff.2018.02.019
  • Vukic, V. R., Hrnjez, D. V., Kanuric, K. G., Milanovic, S. D., Iličic, M. D., Torbica, A. M. and Tomic, J. M., (2014). The effect of kombucha starter culture on the gelation process, microstructure and rheological properties during milk fermentation. Journal of Texture Studies 45: 261–273. Doi: https://doi.org/10.1111/jtxs.12071
  • Xu, Y., Chen, X., Lu, M., Yang, Z., Huang, Y., Liu, D. and Gu, R., (2012). In vitro and in vivo Studies on the Antioxidant Effects of Soymilk Fermented with Streptococcus thermophilus grx02. Food Biotechnology 26: 339–350. Doi: https://doi.org/10.1080/08905436.2012.724039
  • Yang, L., He, Q. S., Corscadden, K. and Udenigwe, C. C., (2015). The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnology Reports 5: 77–88. Doi: https://doi.org/10.1016/j.btre.2014.12.004
  • Zubaidah, E., Yurista, S. and Rahmadani, N. R., (2018). Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples. IOP Conference Series: Earth and Environmental Science 131: 1–8. Doi: http://doi.org/10.1088/1755-1315/131/1/012040

Changes in the content of total polyphenols and the antioxidant activity of different beverages obtained by Kombucha ‘tea fungus’

Year 2020, Volume: 4 Issue: 3, 255 - 261, 15.09.2020
https://doi.org/10.31015/jaefs.2020.3.3

Abstract

Kombucha ‘tea fungus’ is a traditional refreshing drink obtained by fermentation of black tea with sugar as well as a strong symbiosis of acetic bacteria and yeasts. Kombucha tea has several health benefits such as antihyperglycemic, antilipidemic, antimicrobial, hepatoprotective, hypocholesterolemic and anticancer effects due to their antioxidant activity. In this study, six kombucha beverages were prepared by placing Kombucha ‘tea fungus’ in green, black and Echinacea teas, as well as goat, cow and soy’s milk. The fermentation process was monitored by pH, total sugar amount, and titratable activity, as well as their antioxidant activities and total phenolic contents, were analyzed prior to the fermentation process and at the end of fermentation. The results showed that tea-based beverages were fermented for nine days and milk-based beverages were for 6 hours. Their sugar contents were significantly decreased (p < 0.05) as depending on their sugar contents. All fermented beverages displayed a statistically significant decrease (p < 0.05) in the DPPH and ABTS radical scavenging activity at the end of fermentation, while FRAP assays were displayed a statistically significant increase (p < 0.05). Further studies are necessary to the research of nutrients of tea and milk-based beverages on human organs the throughout fermentation.

References

  • Amarasinghe, H., Weerakkody, N. S. and Waisundara, V. Y., (2018). Evaluation of physicochemical properties and antioxidant activities of kombucha “Tea Fungus” during extended periods of fermentation. Food Science and Nutrition 6: 659–665. Doi: https://doi.org/10.1002/fsn3.605
  • Ayed, L., Ben Abid, S. and Hamdi, M., (2017). Development of a beverage from red grape juice fermented with the Kombucha consortium. Annals of Microbiology 67: 111–121. Doi: https://doi.org/10.1007/s13213-016-1242-2
  • Ayed, L. and Hamdi, M., (2015). Manufacture of a beverage from cactus pear juice using “tea fungus” fermentation. Annals of Microbiology 65: 2293–2299. Doi: https://doi.org/10.1007/s13213-015-1071-8
  • Battikh, H., Bakhrouf, A. and Ammar, E., (2012). Antimicrobial effect of Kombucha analogues. LWT - Food Science and Technology 47: 71–77. Doi: https://doi.org/10.1016/j.lwt.2011.12.033
  • Brand-Williams, W., Cuvelier, M. E. and Berset, C., (1995). Use of free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft Und Technologie 28: 25–30.
  • Bravo, L., Goya, L. and Lecumberri, E., (2007). LC / MS characterization of phenolic constituents of mate ( Ilex paraguariensis , St . Hil .) and its antioxidant activity compared to commonly consumed beverages. Food Research International 40: 393–405. Doi: https://doi.org/10.1016/j.foodres.2006.10.016
  • Chakravorty, S., Bhattacharya, S., Chatzinotas, A., Chakraborty, W., Bhattacharya, D. and Gachhui, R., (2016). Kombucha tea fermentation: Microbial and biochemical dynamics. International Journal of Food Microbiology 220: 63–72. Doi: https://doi.org/10.1016/j.ijfoodmicro.2015.12.015
  • Cvetanovic, A., Svarc-Gajic, J., Maskovic, P., Savic, S. and Nikolic, L., (2015). Antioxidant and biological activity of chamomile extracts obtained by different techniques : perspective of using superheated water for isolation of biologically active compounds. Industrial Crops and Products 65: 582–591. Doi: https://doi.org/10.1016/j.indcrop.2014.09.044
  • De Filippis, F., Troise, A. D., Vitaglione, P. and Ercolini, D., (2018). Different temperatures select distinctive acetic acid bacteria species and promotes organic acids production during Kombucha tea fermentation. Food Microbiology 73: 11–16. Doi: https://doi.org/10.1016/j.fm.2018.01.008
  • Guo, C., Yang, J., Wei, J., Li, Y., Xu, J. and Jiang, Y., (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research 23: 1719–1726. Doi: https://doi.org/10.1016/j.nutres.2003.08.005
  • Hall, M. B., 2013. Efficacy of reducing sugar and phenol-sulfuric acid assays for analysis of soluble carbohydrates in feedstuffs. Animal Feed Science and Technology 185: 94–100. Doi: https://doi.org/10.1016/j.anifeedsci.2013.06.008
  • Hrnjez, D., Vaštag, Milanović, S., Vukić, V., Iličić, M., Popović, L. and Kanurić, K., (2014). The biological activity of fermented dairy products obtained by kombucha and conventional starter cultures during storage. Journal of Functional Foods 10: 336–345. Doi: https://doi.org/10.1016/j.jff.2014.06.016
  • Jayabalan, R., Marimuthu, S. and Swaminathan, K., (2007). Changes in content of organic acids and tea polyphenols during kombucha tea fermentation. Food Chemistry 102: 392–398.
  • Jayabalan, R., Subathradevi, P., Marimuthu, S., Sathishkumar, M. and Swaminathan, K., (2008). Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109: 227–234. Doi: https://doi.org/10.1016/j.foodchem.2007.12.037
  • Kanurić, K. G., Milanović, S. D., Ikonić, B. B., Lončar, E. S., Iličić, M. D., Vukić, V. R. and Vukić, D. V., (2018). Kinetics of lactose fermentation in milk with kombucha starter. Journal of Food and Drug Analysis 6–11. Doi: https://doi.org/10.1016/j.jfda.2018.02.002
  • Lončar, E. S., Malbaša, R. V. and Kolarov, L. A., (2001). Metabolic activity of tea fungus on molasses as a source of carbon. APTEFF 1172: 21–26.
  • Malbaša, R., Vitas, J., Lončar, E., Grahovac, J. and Milanović, S., (2014). Optimisation of the antioxidant activity of kombucha fermented milk products. Czech Journal of Food Sciences 32: 477–484.
  • Malbaša, R. V., Lončar, E. S., Vitas, J. S. and Čanadanović-Brunet, J. M., (2011). Influence of starter cultures on the antioxidant activity of kombucha beverage. Food Chemistry 127: 1727–1731. Doi: https://doi.org/10.1016/j.foodchem.2011.02.048
  • Malbaša, R. V., Milanović, S. D., Lončar, E. S., Djurić, M. S., Carić, M. D., Iličić, M. D. and Kolarov, L., (2009). Milk-based beverages obtained by Kombucha application. Food Chemistry 112: 178–184. Doi: https://doi.org/10.1016/j.foodchem.2008.05.055
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C., (1999). Antioxidant Activity Applying an Improved Abts Radical Cation Decolarization Assay 26: 1231–1237. Doi: https://doi.org/10.1016/S0891-5849(98)00315-3
  • Singleton, V. L. and Rossi, J. A. Jr., (1965). Colorimetry of Total Phenolics with Acid Reagents. American Journal of Enology and Viticulture 16:144–158.
  • Siró, I., Kápolna, E., Kápolna, B. and Lugasi, A., (2008). Functional food. Product development, marketing and consumer acceptance-A review. Appetite 51: 456–467. Doi: https://doi.org/10.1016/j.appet.2008.05.060
  • Vázquez-Cabral, B. D., Larrosa-Pérez, M., Gallegos-Infante, J. A., Moreno-Jiménez, M. R., González-Laredo, R. F., Rutiaga-Quiñones, J. G. and Rocha-Guzmán, N. E., (2017). Oak kombucha protects against oxidative stress and inflammatory processes. Chemico-Biological Interactions 272: 1–9. Doi: https://doi.org/10.1016/j.cbi.2017.05.001
  • Velićanski, A. S., Cvetković, D. D., Markov, S. L., Tumbas Šaponjac, V. T. and Vulić, J. J., (2014). Antioxidant and antibacterial activity of the beverage obtained by fermentation of sweetened lemon balm (Melissa offi cinalis L.) tea with symbiotic consortium of bacteria and yeasts. Food Technology and Biotechnology 52: 420–429. Doi: https://doi.org/10.17113/ftb.52.04.14.3611
  • Villarreal-Soto, S. A., Beaufort, S., Bouajila, J., Souchard, J. P. and Taillandier, P., (2018). Understanding Kombucha Tea Fermentation: A Review. Journal of Food Science 83: 580–588. Doi: https://doi.org/10.1111/1750-3841.14068
  • Vitas, J. S., Cvetanović, A. D., Mašković, P. Z., Švarc-Gajić, J. V. and Malbaša, R. V., (2018). Chemical composition and biological activity of novel types of kombucha beverages with yarrow. Journal of Functional Foods 44: 95–102. Doi: https://doi.org/10.1016/j.jff.2018.02.019
  • Vukic, V. R., Hrnjez, D. V., Kanuric, K. G., Milanovic, S. D., Iličic, M. D., Torbica, A. M. and Tomic, J. M., (2014). The effect of kombucha starter culture on the gelation process, microstructure and rheological properties during milk fermentation. Journal of Texture Studies 45: 261–273. Doi: https://doi.org/10.1111/jtxs.12071
  • Xu, Y., Chen, X., Lu, M., Yang, Z., Huang, Y., Liu, D. and Gu, R., (2012). In vitro and in vivo Studies on the Antioxidant Effects of Soymilk Fermented with Streptococcus thermophilus grx02. Food Biotechnology 26: 339–350. Doi: https://doi.org/10.1080/08905436.2012.724039
  • Yang, L., He, Q. S., Corscadden, K. and Udenigwe, C. C., (2015). The prospects of Jerusalem artichoke in functional food ingredients and bioenergy production. Biotechnology Reports 5: 77–88. Doi: https://doi.org/10.1016/j.btre.2014.12.004
  • Zubaidah, E., Yurista, S. and Rahmadani, N. R., (2018). Characteristic of physical, chemical, and microbiological kombucha from various varieties of apples. IOP Conference Series: Earth and Environmental Science 131: 1–8. Doi: http://doi.org/10.1088/1755-1315/131/1/012040
There are 30 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Articles
Authors

Hazal Özyurt 0000-0003-2524-5381

Publication Date September 15, 2020
Submission Date January 2, 2020
Acceptance Date July 15, 2020
Published in Issue Year 2020 Volume: 4 Issue: 3

Cite

APA Özyurt, H. (2020). Changes in the content of total polyphenols and the antioxidant activity of different beverages obtained by Kombucha ‘tea fungus’. International Journal of Agriculture Environment and Food Sciences, 4(3), 255-261. https://doi.org/10.31015/jaefs.2020.3.3


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27