Research Article
BibTex RIS Cite
Year 2022, Volume: 6 Issue: 1, 80 - 90, 15.03.2022
https://doi.org/10.31015/jaefs.2022.1.12

Abstract

References

  • Acet, Ö., Baran, T., Erdönmez, D., Aksoy, N. H., Alacabey, İ., Menteş, A., & Odabaşi, M. (2018). O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. Journal of Chromatography A, 1550, 21-27. doi:https://doi.org/10.1016/j.chroma.2018.03.022
  • Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of hazardous materials, 171(1-3), 767-773. doi:https://doi.org/10.1016/j.jhazmat.2009.06.060
  • Ahmad, W., Khan, A., Ali, N., Khan, S., Uddin, S., Malik, S., . . . Bilal, M. (2021). Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environmental Science and Pollution Research, 28(7), 8074-8087. doi:https://doi.org/10.1007/s11356-020-10898-7
  • Akar, S. T., Özcan, A. S., Akar, T., Özcan, A., & Kaynak, Z. (2009). Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination, 249(2), 757-761. doi:https://doi.org/10.1016/j.desal.2008.09.012
  • Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. Journal of hazardous materials, 181(1-3), 666-672. doi:https://doi.org/10.1016/j.jhazmat.2010.05.064
  • Alacabey, İ. (2006). Bazı ağır metallerin (kobalt, krom, kadmiyum) doğal ve aktive edilmiş Çaldıran Diatomiti (Çaldıran/Van) üzerindeki adsorpsiyon denge çalışmaları. Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Master thesis.,
  • Alacabey, İ. (2014). Doğal ve aktive edilmiş Van Gölü sediment (dip çamuru) örneklerinin bazı ağır metallerle adsorspsiyonunun izoterm ve termodinamik analizi. Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Phd thesis.,
  • Alacabey, İ. (2022). Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds. Molecules, 27(4), 1380. Retrieved from https://www.mdpi.com/1420-3049/27/4/1380
  • Alacabey, İ., Acet, Ö., Önal, B., Dikici, E., Karakoç, V., Gürbüz, F., . . . Odabaşı, M. (2021). Pumice particle interface: a case study for immunoglobulin G purification. Polymer Bulletin, 78(10), 5593-5607. doi:https://doi.org/10.1007/s00289-020-03392-0
  • Alacabey, İ., Kul, A. R., Şakir, E., & Alkan, H. (2020). Van Gölü Doğal Sediment ve Modifiye Sediment Üzerine Krom (III) Adsorpsiyonu (İzoterm ve Termodinamik Analiz Çalışması). Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(3), 1225-1232. doi:https://doi.org/10.24012/dumf.731216
  • Alkan, S., Kul, A. R., Alacabey, İ. h., & Erol, N. (2014). Polifenol Oksidaz Enziminin Aktif Karbonla Adsorpsiyonunun İzoterm ve Kinetik Analizi. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 69-78. Retrieved from https://dergipark.org.tr/tr/download/article-file/1161435
  • Atasoy, N., Mercan, U., Alacabey, İ., & Kul, A. R. (2011). Levels of heavy metals and certain macro elements in potable and tap water at Van City Center. Hacettepe Journal of Biology and Chemistry, 39(4), 391-396. Retrieved from https://dergipark.org.tr/en/download/article-file/1727656
  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource technology, 58(3), 217-227. doi:https://doi.org/10.1016/S0960-8524(96)00113-7
  • Bayramoglu, G., Altintas, B., & Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152(2-3), 339-346. doi:https://doi.org/10.1016/j.cej.2009.04.051
  • Bhatnagar, A., Jain, A., & Mukul, M. (2005). Removal of congo red dye from water using carbon slurry waste. Environmental Chemistry Letters, 2(4), 199-202. doi:https://doi.org/10.1007/s10311-004-0097-0
  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Kaolinite and montmorillonite as adsorbents for Fe (III), Co (II) and Ni (II) in aqueous medium. Applied Clay Science, 41(1-2), 1-9. doi:https://doi.org/10.1016/j.clay.2007.09.005
  • Biçer, Y. (2019). Bardakçı/Van kilinin bazı fizikokimyasal ve mineralojik özellikleri üzerine ısıl işlemin etkisi. Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Master thesis.,
  • Caliskan, N., Kul, A. R., Alkan, S., Sogut, E. G., & Alacabey, I. (2011). Adsorption of Zinc (II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study. Journal of hazardous materials, 193, 27-36. doi:https://doi.org/10.1016/j.jhazmat.2011.06.058
  • Caliskan, N., Sogut, E. G., Savran, A., Kul, A. R., & Kubilay, S. (2017). Removal of Cu (II) and Cd (II) ions from aqueous solutions using local raw material as adsorbent: a study in binary systems. Desalination and Water Treatment, 75, 132-147. doi:https://doi.org/10.5004/dwt.2017.20728
  • Chakraborty, S., Chowdhury, S., & Saha, P. D. (2011). Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533-1541. doi:https://doi.org/10.1016/j.carbpol.2011.06.058
  • Choy, K. K., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling, 27(1-2), 57-71. doi:https://doi.org/10.1016/S0921-3449(98)00085-8
  • Collins, O. N., & Elijah, O. C. (2019). ADSORPTION OF A DYE (CRYSTAL VIOLET) ON AN ACID MODIFIED NON-CONVENTIONAL ADSORBENT. Journal of Chemical Technology & Metallurgy, 54(1). Retrieved from https://dl.uctm.edu/journal/node/j2019-1/12_17_197_p_95_110.pdf
  • Depci, T., Alkan, S., Kul, A., ÖNAL, Y., Alacabey, I., & Dişli, E. (2011). Characteristic properties of adsorbed catalase onto activated carbon based adiyaman lignite. Fresenius Environmental Bulletin, 20(9a), 2373-2380. Retrieved from https://www.prt-parlar.de/download_feb_2011/
  • Derakhshan, M. S., & Moradi, O. (2014). The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution. Journal of Industrial and Engineering Chemistry, 20(5), 3186-3194. doi:https://doi.org/10.1016/j.jiec.2013.11.064 El Haddad, M., Slimani, R., Mamouni, R., ElAntri, S., & Lazar, S. (2013). Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic and Applied Sciences, 14(1), 51-59. doi:https://doi.org/10.1016/j.jaubas.2013.03.002
  • Erol, K. (2016). DNA adsorption via Co (II) immobilized cryogels. Journal of Macromolecular Science, Part A, 53(10), 629-635. doi:https://doi.org/10.1080/10601325.2016.1212310
  • Erol, K., Tatar, D., Veyisoğlu, A., & Tokatlı, A. (2021). Antimicrobial magnetic poly (GMA) microparticles: synthesis, characterization and lysozyme immobilization. Journal of Polymer Engineering, 41(2), 144-154. doi:https://doi.org/10.1515/polyeng-2020-0191
  • Erol, K., Yıldız, E., Alacabey, İ., Karabörk, M., & Uzun, L. (2019). Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions. Environmental Science and Pollution Research, 26(32), 33631-33641. doi:https://doi.org/10.1007/s11356-019-06423-0
  • Felhi, M., Tlili, A., Gaied, M., & Montacer, M. (2008). Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Applied Clay Science, 39(3-4), 208-217. doi:https://doi.org/10.1016/j.clay.2007.06.004
  • Gadsden, J. A. (1975). Infrared spectra of minerals and related inorganic c ompounds.
  • Idrissi, M., Miyah, Y., Benjelloun, Y., & Chaouch, M. (2016). Degradation of crystal violet by heterogeneous Fenton-like reaction using Fe/Clay catalyst with H2O2. Journal of Materials and Environmental Science, 7(1), 50-58. Retrieved from http://www.jmaterenvironsci.com/Document/vol7/vol7_N1/6-Idrissi.pdf
  • Inthorn, D., Singhtho, S., Thiravetyan, P., & Khan, E. (2004). Decolorization of basic, direct and reactive dyes by pre-treated narrow-leaved cattail (Typha angustifolia Linn.). Bioresource technology, 94(3), 299-306. doi:https://doi.org/10.1016/j.biortech.2004.01.002
  • Iriarte-Velasco, U., Chimeno-Alanís, N., Gonzalez-Marcos, M., & Álvarez-Uriarte, J. I. (2011). Relationship between thermodynamic data and adsorption/desorption performance of acid and basic dyes onto activated carbons. Journal of Chemical & Engineering Data, 56(5), 2100-2109. doi:https://doi.org/10.1021/je1011345
  • Ji, Y., Xu, F., Wei, W., Gao, H., Zhang, K., Zhang, G., . . . Zhang, P. (2021). Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. Journal of Solid State Chemistry, 295, 121917. doi:https://doi.org/10.1016/j.jssc.2020.121917
  • Karakaya, N., Karakaya, M. Ç., & Faure, K. (2007). Doğu Karadeniz Bölgesi Kil Mineralleşmelerinin Oluşumu ve Kökeni. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 22(1), 1-12. Retrieved from https://dergipark.org.tr/en/download/article-file/215913
  • Kiran, I., Ilhan, S., Caner, N., Iscen, C. F., & Yildiz, Z. (2009). Biosorption properties of dried Neurospora crassa for the removal of Burazol Blue ED dye. Desalination, 249(1), 273-278. doi:https://doi.org/10.1016/j.desal.2008.07.033
  • Kireç, O., Alacabey, İ., Erol, K., & Alkan, H. (2021). Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. Journal of Polymer Engineering, 41(3), 226-234. doi:https://doi.org/10.1515/polyeng-2020-0150
  • Kul, A., Alacabey, İ., & Kılıç, N. Ç. (2010). Removal of Cobalt Ions from Aqueous Solution by Diatomite. Hacettepe Journal of Biology and Chemistry, 38(2), 85-93. Retrieved from http://www.hjbc.hacettepe.edu.tr/site/assets/files/2654/38_2_85-93.pdf
  • Kumar, R., & Ahmad, R. (2011). Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265(1-3), 112-118. doi:https://doi.org/10.1016/j.desal.2010.07.040
  • Kumari, H. J., Krishnamoorthy, P., Arumugam, T., Radhakrishnan, S., & Vasudevan, D. (2017). An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. International journal of biological macromolecules, 96, 324-333. doi:https://doi.org/10.1016/j.ijbiomac.2016.11.077
  • Lairini, S., El Mahtal, K., Miyah, Y., Tanji, K., Guissi, S., Boumchita, S., & Zerrouq, F. (2017). The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies. J. Mater. Environ. Sci, 8(9), 3252-3261. doi:https://doi.org/10.1080/09593332008616798
  • Lee, C., Low, K., & Gan, P. (1999). Removal of some organic dyes by acid-treated spent bleaching earth. Environmental Technology, 20(1), 99-104. doi:https://doi.org/10.1016/S0304-3894(02)00026-2
  • Lin, S.-H., & Juang, R.-S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of hazardous materials, 92(3), 315-326. doi:https://doi.org/10.1016/S0304-3894(02)00026-2
  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 1-10. doi:https://doi.org/10.1016/S0924-2031(02)00065-6
  • Madejova, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and clay minerals, 49(5), 410-432. doi:https://doi.org/10.1346/CCMN.2001.0490502
  • Mahamad, M. N., Zaini, M. A. A., & Zakaria, Z. A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102, 274-280. doi:https://doi.org/10.1016/j.ibiod.2015.03.009
  • Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Bioresource technology, 132, 446-452. doi:https://doi.org/10.1016/j.biortech.2013.01.156
  • Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of colloid and interface science, 343(2), 463-473. doi:https://doi.org/10.1016/j.jcis.2009.11.060
  • Mittal, H., Al Alili, A., Morajkar, P. P., & Alhassan, S. M. (2021). Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. Journal of Molecular Liquids, 323, 115034. doi:https://doi.org/10.1016/j.molliq.2020.115034
  • Ogata, F., Imai, D., & Kawasaki, N. (2015). Cationic dye removal from aqueous solution by waste biomass produced from calcination treatment of rice bran. Journal of Environmental Chemical Engineering, 3(3), 1476-1485. doi:https://doi.org/10.1016/j.jece.2015.05.025
  • Riza, K. A., Tolga, D., Ihsan, A., Salih, A., & Yunus, O. (2011). Equilibrium, kinetic and thermodynamic studies of nickel adsorption onto natural and modified kaolinites. Fresenius Environmental Bulletin, 20(5), 1155-1166. Retrieved from https://www.prt-parlar.de/download_feb_2011/
  • Saeed, A., Sharif, M., & Iqbal, M. (2010). Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of hazardous materials, 179(1-3), 564-572. doi:https://doi.org/10.1016/j.jhazmat.2010.03.041
  • Senthilkumaar, S., Kalaamani, P., & Subburaam, C. (2006). Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of hazardous materials, 136(3), 800-808. doi:https://doi.org/10.1016/j.jhazmat.2006.01.045
  • Shin, H. S., & Kim, J.-H. (2016). Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochemistry, 51(7), 917-924. doi:https://doi.org/10.1016/j.procbio.2016.03.013
  • Shoukat, S., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous and Mesoporous Materials, 239, 180-189. doi:https://doi.org/10.1016/j.micromeso.2016.10.004
  • Sogut, E. G., & Caliskan, N. (2017). Removal of lead, copper and cadmium ions from aqueous solution using raw and thermally modified diatomite. Desalination and Water Treatment, 58, 154-167. doi:https://doi.org/10.5004/dwt.2017.1809
  • Tural, S., Ece, M. Ş., & Tural, B. (2018). Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicology and environmental safety, 162, 245-252. doi:https://doi.org/10.1016/j.ecoenv.2018.06.066
  • Ullah, I., Nadeem, R., Iqbal, M., & Manzoor, Q. (2013). Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological engineering, 60, 99-107. doi:https://doi.org/10.1016/j.ecoleng.2013.07.028
  • Yalçın, E. (2010). Bentonitik killer üzerinde etilen glikol monoetil eter adsorpsiyonu. Ankara University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Master thesis.,
  • Yao, Y., Xu, F., Chen, M., Xu, Z., & Zhu, Z. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource technology, 101(9), 3040-3046. doi:https://doi.org/10.1016/j.biortech.2009.12.042

Adsorptive removal of cationic dye from aqueous solutions using Bardakçı clay

Year 2022, Volume: 6 Issue: 1, 80 - 90, 15.03.2022
https://doi.org/10.31015/jaefs.2022.1.12

Abstract

This study was investigation employed the batch adsorption method using Bardakçı Clay/Van as an adsorbent to remove crystal violent, a cationic dye from an aqueous solution. The effects of pH, adsorbent amount, interaction time and concentration were investigated to determine the optimal adsorption conditions. The optimal adsorption conditions were determined to be pH=6, 0.6 g adsorbent amount, and the adsorption reached equilibrium at the 25th minute. The equilibrium isotherm was determined using the Langmuir, Freundlich and Dubinin–Radushkevich (D–R) adsorption equations. It was discovered to conform to the Langmuir isotherm. In the Dubinin-Radushkevich (D-R) model, the E value was calculated to E< 8 kJmol-1, indicating that the adsorption process occurs physically. Thermodynamic parameters such as enthalpy (ΔHo), Gibbs' free energy (ΔGo) and entropy (ΔSo) were calculated. The adsorption of crystal violet with Bardakçı clay demonstrated that the process was endothermic, occurring both physically and spontaneously.

References

  • Acet, Ö., Baran, T., Erdönmez, D., Aksoy, N. H., Alacabey, İ., Menteş, A., & Odabaşi, M. (2018). O-carboxymethyl chitosan Schiff base complexes as affinity ligands for immobilized metal-ion affinity chromatography of lysozyme. Journal of Chromatography A, 1550, 21-27. doi:https://doi.org/10.1016/j.chroma.2018.03.022
  • Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of hazardous materials, 171(1-3), 767-773. doi:https://doi.org/10.1016/j.jhazmat.2009.06.060
  • Ahmad, W., Khan, A., Ali, N., Khan, S., Uddin, S., Malik, S., . . . Bilal, M. (2021). Photocatalytic degradation of crystal violet dye under sunlight by chitosan-encapsulated ternary metal selenide microspheres. Environmental Science and Pollution Research, 28(7), 8074-8087. doi:https://doi.org/10.1007/s11356-020-10898-7
  • Akar, S. T., Özcan, A. S., Akar, T., Özcan, A., & Kaynak, Z. (2009). Biosorption of a reactive textile dye from aqueous solutions utilizing an agro-waste. Desalination, 249(2), 757-761. doi:https://doi.org/10.1016/j.desal.2008.09.012
  • Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. Journal of hazardous materials, 181(1-3), 666-672. doi:https://doi.org/10.1016/j.jhazmat.2010.05.064
  • Alacabey, İ. (2006). Bazı ağır metallerin (kobalt, krom, kadmiyum) doğal ve aktive edilmiş Çaldıran Diatomiti (Çaldıran/Van) üzerindeki adsorpsiyon denge çalışmaları. Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Master thesis.,
  • Alacabey, İ. (2014). Doğal ve aktive edilmiş Van Gölü sediment (dip çamuru) örneklerinin bazı ağır metallerle adsorspsiyonunun izoterm ve termodinamik analizi. Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Phd thesis.,
  • Alacabey, İ. (2022). Antibiotic Removal from the Aquatic Environment with Activated Carbon Produced from Pumpkin Seeds. Molecules, 27(4), 1380. Retrieved from https://www.mdpi.com/1420-3049/27/4/1380
  • Alacabey, İ., Acet, Ö., Önal, B., Dikici, E., Karakoç, V., Gürbüz, F., . . . Odabaşı, M. (2021). Pumice particle interface: a case study for immunoglobulin G purification. Polymer Bulletin, 78(10), 5593-5607. doi:https://doi.org/10.1007/s00289-020-03392-0
  • Alacabey, İ., Kul, A. R., Şakir, E., & Alkan, H. (2020). Van Gölü Doğal Sediment ve Modifiye Sediment Üzerine Krom (III) Adsorpsiyonu (İzoterm ve Termodinamik Analiz Çalışması). Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 11(3), 1225-1232. doi:https://doi.org/10.24012/dumf.731216
  • Alkan, S., Kul, A. R., Alacabey, İ. h., & Erol, N. (2014). Polifenol Oksidaz Enziminin Aktif Karbonla Adsorpsiyonunun İzoterm ve Kinetik Analizi. Dicle Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 3(1), 69-78. Retrieved from https://dergipark.org.tr/tr/download/article-file/1161435
  • Atasoy, N., Mercan, U., Alacabey, İ., & Kul, A. R. (2011). Levels of heavy metals and certain macro elements in potable and tap water at Van City Center. Hacettepe Journal of Biology and Chemistry, 39(4), 391-396. Retrieved from https://dergipark.org.tr/en/download/article-file/1727656
  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dyecontaining effluents: a review. Bioresource technology, 58(3), 217-227. doi:https://doi.org/10.1016/S0960-8524(96)00113-7
  • Bayramoglu, G., Altintas, B., & Arica, M. Y. (2009). Adsorption kinetics and thermodynamic parameters of cationic dyes from aqueous solutions by using a new strong cation-exchange resin. Chemical Engineering Journal, 152(2-3), 339-346. doi:https://doi.org/10.1016/j.cej.2009.04.051
  • Bhatnagar, A., Jain, A., & Mukul, M. (2005). Removal of congo red dye from water using carbon slurry waste. Environmental Chemistry Letters, 2(4), 199-202. doi:https://doi.org/10.1007/s10311-004-0097-0
  • Bhattacharyya, K. G., & Gupta, S. S. (2008). Kaolinite and montmorillonite as adsorbents for Fe (III), Co (II) and Ni (II) in aqueous medium. Applied Clay Science, 41(1-2), 1-9. doi:https://doi.org/10.1016/j.clay.2007.09.005
  • Biçer, Y. (2019). Bardakçı/Van kilinin bazı fizikokimyasal ve mineralojik özellikleri üzerine ısıl işlemin etkisi. Yüzüncü Yıl University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Master thesis.,
  • Caliskan, N., Kul, A. R., Alkan, S., Sogut, E. G., & Alacabey, I. (2011). Adsorption of Zinc (II) on diatomite and manganese-oxide-modified diatomite: A kinetic and equilibrium study. Journal of hazardous materials, 193, 27-36. doi:https://doi.org/10.1016/j.jhazmat.2011.06.058
  • Caliskan, N., Sogut, E. G., Savran, A., Kul, A. R., & Kubilay, S. (2017). Removal of Cu (II) and Cd (II) ions from aqueous solutions using local raw material as adsorbent: a study in binary systems. Desalination and Water Treatment, 75, 132-147. doi:https://doi.org/10.5004/dwt.2017.20728
  • Chakraborty, S., Chowdhury, S., & Saha, P. D. (2011). Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533-1541. doi:https://doi.org/10.1016/j.carbpol.2011.06.058
  • Choy, K. K., McKay, G., & Porter, J. F. (1999). Sorption of acid dyes from effluents using activated carbon. Resources, Conservation and Recycling, 27(1-2), 57-71. doi:https://doi.org/10.1016/S0921-3449(98)00085-8
  • Collins, O. N., & Elijah, O. C. (2019). ADSORPTION OF A DYE (CRYSTAL VIOLET) ON AN ACID MODIFIED NON-CONVENTIONAL ADSORBENT. Journal of Chemical Technology & Metallurgy, 54(1). Retrieved from https://dl.uctm.edu/journal/node/j2019-1/12_17_197_p_95_110.pdf
  • Depci, T., Alkan, S., Kul, A., ÖNAL, Y., Alacabey, I., & Dişli, E. (2011). Characteristic properties of adsorbed catalase onto activated carbon based adiyaman lignite. Fresenius Environmental Bulletin, 20(9a), 2373-2380. Retrieved from https://www.prt-parlar.de/download_feb_2011/
  • Derakhshan, M. S., & Moradi, O. (2014). The study of thermodynamics and kinetics methyl orange and malachite green by SWCNTs, SWCNT-COOH and SWCNT-NH2 as adsorbents from aqueous solution. Journal of Industrial and Engineering Chemistry, 20(5), 3186-3194. doi:https://doi.org/10.1016/j.jiec.2013.11.064 El Haddad, M., Slimani, R., Mamouni, R., ElAntri, S., & Lazar, S. (2013). Removal of two textile dyes from aqueous solutions onto calcined bones. Journal of the Association of Arab Universities for Basic and Applied Sciences, 14(1), 51-59. doi:https://doi.org/10.1016/j.jaubas.2013.03.002
  • Erol, K. (2016). DNA adsorption via Co (II) immobilized cryogels. Journal of Macromolecular Science, Part A, 53(10), 629-635. doi:https://doi.org/10.1080/10601325.2016.1212310
  • Erol, K., Tatar, D., Veyisoğlu, A., & Tokatlı, A. (2021). Antimicrobial magnetic poly (GMA) microparticles: synthesis, characterization and lysozyme immobilization. Journal of Polymer Engineering, 41(2), 144-154. doi:https://doi.org/10.1515/polyeng-2020-0191
  • Erol, K., Yıldız, E., Alacabey, İ., Karabörk, M., & Uzun, L. (2019). Magnetic diatomite for pesticide removal from aqueous solution via hydrophobic interactions. Environmental Science and Pollution Research, 26(32), 33631-33641. doi:https://doi.org/10.1007/s11356-019-06423-0
  • Felhi, M., Tlili, A., Gaied, M., & Montacer, M. (2008). Mineralogical study of kaolinitic clays from Sidi El Bader in the far north of Tunisia. Applied Clay Science, 39(3-4), 208-217. doi:https://doi.org/10.1016/j.clay.2007.06.004
  • Gadsden, J. A. (1975). Infrared spectra of minerals and related inorganic c ompounds.
  • Idrissi, M., Miyah, Y., Benjelloun, Y., & Chaouch, M. (2016). Degradation of crystal violet by heterogeneous Fenton-like reaction using Fe/Clay catalyst with H2O2. Journal of Materials and Environmental Science, 7(1), 50-58. Retrieved from http://www.jmaterenvironsci.com/Document/vol7/vol7_N1/6-Idrissi.pdf
  • Inthorn, D., Singhtho, S., Thiravetyan, P., & Khan, E. (2004). Decolorization of basic, direct and reactive dyes by pre-treated narrow-leaved cattail (Typha angustifolia Linn.). Bioresource technology, 94(3), 299-306. doi:https://doi.org/10.1016/j.biortech.2004.01.002
  • Iriarte-Velasco, U., Chimeno-Alanís, N., Gonzalez-Marcos, M., & Álvarez-Uriarte, J. I. (2011). Relationship between thermodynamic data and adsorption/desorption performance of acid and basic dyes onto activated carbons. Journal of Chemical & Engineering Data, 56(5), 2100-2109. doi:https://doi.org/10.1021/je1011345
  • Ji, Y., Xu, F., Wei, W., Gao, H., Zhang, K., Zhang, G., . . . Zhang, P. (2021). Efficient and fast adsorption of methylene blue dye onto a nanosheet MFI zeolite. Journal of Solid State Chemistry, 295, 121917. doi:https://doi.org/10.1016/j.jssc.2020.121917
  • Karakaya, N., Karakaya, M. Ç., & Faure, K. (2007). Doğu Karadeniz Bölgesi Kil Mineralleşmelerinin Oluşumu ve Kökeni. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 22(1), 1-12. Retrieved from https://dergipark.org.tr/en/download/article-file/215913
  • Kiran, I., Ilhan, S., Caner, N., Iscen, C. F., & Yildiz, Z. (2009). Biosorption properties of dried Neurospora crassa for the removal of Burazol Blue ED dye. Desalination, 249(1), 273-278. doi:https://doi.org/10.1016/j.desal.2008.07.033
  • Kireç, O., Alacabey, İ., Erol, K., & Alkan, H. (2021). Removal of 17β-estradiol from aqueous systems with hydrophobic microspheres. Journal of Polymer Engineering, 41(3), 226-234. doi:https://doi.org/10.1515/polyeng-2020-0150
  • Kul, A., Alacabey, İ., & Kılıç, N. Ç. (2010). Removal of Cobalt Ions from Aqueous Solution by Diatomite. Hacettepe Journal of Biology and Chemistry, 38(2), 85-93. Retrieved from http://www.hjbc.hacettepe.edu.tr/site/assets/files/2654/38_2_85-93.pdf
  • Kumar, R., & Ahmad, R. (2011). Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265(1-3), 112-118. doi:https://doi.org/10.1016/j.desal.2010.07.040
  • Kumari, H. J., Krishnamoorthy, P., Arumugam, T., Radhakrishnan, S., & Vasudevan, D. (2017). An efficient removal of crystal violet dye from waste water by adsorption onto TLAC/Chitosan composite: a novel low cost adsorbent. International journal of biological macromolecules, 96, 324-333. doi:https://doi.org/10.1016/j.ijbiomac.2016.11.077
  • Lairini, S., El Mahtal, K., Miyah, Y., Tanji, K., Guissi, S., Boumchita, S., & Zerrouq, F. (2017). The adsorption of Crystal violet from aqueous solution by using potato peels (Solanum tuberosum): equilibrium and kinetic studies. J. Mater. Environ. Sci, 8(9), 3252-3261. doi:https://doi.org/10.1080/09593332008616798
  • Lee, C., Low, K., & Gan, P. (1999). Removal of some organic dyes by acid-treated spent bleaching earth. Environmental Technology, 20(1), 99-104. doi:https://doi.org/10.1016/S0304-3894(02)00026-2
  • Lin, S.-H., & Juang, R.-S. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of hazardous materials, 92(3), 315-326. doi:https://doi.org/10.1016/S0304-3894(02)00026-2
  • Madejová, J. (2003). FTIR techniques in clay mineral studies. Vibrational spectroscopy, 31(1), 1-10. doi:https://doi.org/10.1016/S0924-2031(02)00065-6
  • Madejova, J., & Komadel, P. (2001). Baseline studies of the clay minerals society source clays: infrared methods. Clays and clay minerals, 49(5), 410-432. doi:https://doi.org/10.1346/CCMN.2001.0490502
  • Mahamad, M. N., Zaini, M. A. A., & Zakaria, Z. A. (2015). Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. International Biodeterioration & Biodegradation, 102, 274-280. doi:https://doi.org/10.1016/j.ibiod.2015.03.009
  • Manzoor, Q., Nadeem, R., Iqbal, M., Saeed, R., & Ansari, T. M. (2013). Organic acids pretreatment effect on Rosa bourbonia phyto-biomass for removal of Pb (II) and Cu (II) from aqueous media. Bioresource technology, 132, 446-452. doi:https://doi.org/10.1016/j.biortech.2013.01.156
  • Mittal, A., Mittal, J., Malviya, A., Kaur, D., & Gupta, V. (2010). Adsorption of hazardous dye crystal violet from wastewater by waste materials. Journal of colloid and interface science, 343(2), 463-473. doi:https://doi.org/10.1016/j.jcis.2009.11.060
  • Mittal, H., Al Alili, A., Morajkar, P. P., & Alhassan, S. M. (2021). Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. Journal of Molecular Liquids, 323, 115034. doi:https://doi.org/10.1016/j.molliq.2020.115034
  • Ogata, F., Imai, D., & Kawasaki, N. (2015). Cationic dye removal from aqueous solution by waste biomass produced from calcination treatment of rice bran. Journal of Environmental Chemical Engineering, 3(3), 1476-1485. doi:https://doi.org/10.1016/j.jece.2015.05.025
  • Riza, K. A., Tolga, D., Ihsan, A., Salih, A., & Yunus, O. (2011). Equilibrium, kinetic and thermodynamic studies of nickel adsorption onto natural and modified kaolinites. Fresenius Environmental Bulletin, 20(5), 1155-1166. Retrieved from https://www.prt-parlar.de/download_feb_2011/
  • Saeed, A., Sharif, M., & Iqbal, M. (2010). Application potential of grapefruit peel as dye sorbent: kinetics, equilibrium and mechanism of crystal violet adsorption. Journal of hazardous materials, 179(1-3), 564-572. doi:https://doi.org/10.1016/j.jhazmat.2010.03.041
  • Senthilkumaar, S., Kalaamani, P., & Subburaam, C. (2006). Liquid phase adsorption of crystal violet onto activated carbons derived from male flowers of coconut tree. Journal of hazardous materials, 136(3), 800-808. doi:https://doi.org/10.1016/j.jhazmat.2006.01.045
  • Shin, H. S., & Kim, J.-H. (2016). Isotherm, kinetic and thermodynamic characteristics of adsorption of paclitaxel onto Diaion HP-20. Process Biochemistry, 51(7), 917-924. doi:https://doi.org/10.1016/j.procbio.2016.03.013
  • Shoukat, S., Bhatti, H. N., Iqbal, M., & Noreen, S. (2017). Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous and Mesoporous Materials, 239, 180-189. doi:https://doi.org/10.1016/j.micromeso.2016.10.004
  • Sogut, E. G., & Caliskan, N. (2017). Removal of lead, copper and cadmium ions from aqueous solution using raw and thermally modified diatomite. Desalination and Water Treatment, 58, 154-167. doi:https://doi.org/10.5004/dwt.2017.1809
  • Tural, S., Ece, M. Ş., & Tural, B. (2018). Synthesis of novel magnetic nano-sorbent functionalized with N-methyl-D-glucamine by click chemistry and removal of boron with magnetic separation method. Ecotoxicology and environmental safety, 162, 245-252. doi:https://doi.org/10.1016/j.ecoenv.2018.06.066
  • Ullah, I., Nadeem, R., Iqbal, M., & Manzoor, Q. (2013). Biosorption of chromium onto native and immobilized sugarcane bagasse waste biomass. Ecological engineering, 60, 99-107. doi:https://doi.org/10.1016/j.ecoleng.2013.07.028
  • Yalçın, E. (2010). Bentonitik killer üzerinde etilen glikol monoetil eter adsorpsiyonu. Ankara University, Graduate School of Natural and Applied Sciences Department of Chemistry, Van, Master thesis.,
  • Yao, Y., Xu, F., Chen, M., Xu, Z., & Zhu, Z. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource technology, 101(9), 3040-3046. doi:https://doi.org/10.1016/j.biortech.2009.12.042
There are 59 citations in total.

Details

Primary Language English
Subjects Environmental Sciences, Environmental Engineering
Journal Section Research Articles
Authors

İhsan Alacabey 0000-0002-3080-2296

Publication Date March 15, 2022
Submission Date January 11, 2022
Acceptance Date March 5, 2022
Published in Issue Year 2022 Volume: 6 Issue: 1

Cite

APA Alacabey, İ. (2022). Adsorptive removal of cationic dye from aqueous solutions using Bardakçı clay. International Journal of Agriculture Environment and Food Sciences, 6(1), 80-90. https://doi.org/10.31015/jaefs.2022.1.12


The International Journal of Agriculture, Environment and Food Sciences content is licensed under a Creative Commons Attribution-NonCommercial (CC BY-NC) 4.0 International License which permits third parties to share and adapt the content for non-commercial purposes by giving the appropriate credit to the original work. Authors retain the copyright of their published work in the International Journal of Agriculture, Environment and Food Sciences. 

Web:  dergipark.org.tr/jaefs  E-mail: editor@jaefs.com WhatsApp: +90 850 309 59 27